Студопедия — Понятие о моделях сложных процессов
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие о моделях сложных процессов






Моделирование сложных процессов

Целью планирования эксперимента является создание какой-либо, обычно математической, модели исследуемого процесса, с последующим анализом и выявлением основных воздействующих факторов и путей их корректировки. Мы будем рассматривать сложные системы с непрерывными процессами. Но используемые при этом методы применимы и для дискретных процессов.

Сложный процесс, как и любая сложная система, представляет собой составной объект, части которого можно рассматривать как подсистемы, объединенные в единое целое по определенным законам и связанные между собой заданными соотношениями. Естественно, эти подсистемы можно также делить на составляющие, но такое деление мы использовать не будем, а будем рассматривать сложный процесс как «черный ящик». Набор свойств такого «черного ящика» определяется свойствами составляющих подсистем, а также характером их взаимодействия. Сложная система характеризуется тем, что:

· Состояние системы описывается, как правило, большим числом динамических переменных;

· Система обнаруживает качественные изменения динамических переменных;

· Система включает нелинейные взаимодействия и обратные связи, которые также содержат нелинейности.

Сложные системы и процессы их функционирования становятся все более распространенным объектом исследования в технике. Конечной задачей современного эксперимента, как правило, является разработка модели адекватной исследуемому процессу. Под адекватностью понимают верное воспроизведение в модели связей и отношений исследуемого процесса. Степень адекватности определяется соответствием модельных и экспериментальных результатов. В тоже время, экспериментальное исследование сложных процессов должно дополняться моделированием, когда эксперименты ставятся в соответствии с моделью исследуемого процесса. Моделирование, с одной стороны, позволяет четко поставить задачу эксперимента, а с другой, способствует анализу его результатов. Сравнение экспериментальных и модельных данных устанавливает влияние на результаты процесса новых факторов или роль ранее не учитываемых явлений.

Таким образом, большинство современных процессов характеризуется:

1. наличием значительного числа разнообразных факторов, влияющих на процесс;

2. большим количеством внутренних связей между факторами и их сложным взаимным влиянием на процесс;

3. развитием различных направлений процесса, конкурирующих между собой и определяющих его ход;

4. воздействием на процесс большого числа неконтролируемых и неуправляемых факторов играющих роль возмущений.


Представим процесс в виде «черного ящика».

Здесь, состояние объекта «черного ящика» характеризуется n-мерным вектором Y, называемым выходом системы или вектором отклика, а его составляющие y1, y2, y3…yn – параметрами или функциями отклика.

Вектор отклика является функцией входных параметров, действующих в исследуемом процессе, которые можно разбить на три основные группы.

Первая группа составляет k-мерный вектор X управляемых параметров, то есть таких, которые можно измерять и изменять, поддерживая таким образом некоторый заданный режим исследуемого процесса. Вектор X называют вектором факторов, а его составляющие x1, x2, x3…xk – факторами; а область их возможных значений в N опытах – факторным пространством.

Вторая группа образует p-мерный вектор W контролируемых, но неуправляемых параметров w1, w2, w3…wp, характеризующих состояние исходных функций отклика на операциях, предшествующих исследуемому процессу (например, чистота исходного кремния, используемого в процессе изготовления микросхем). Они не поддаются целенаправленному изменению в исследуемом процессе.

Третья группа входных параметров составляет m-мерных вектор Z неконтролируемых, а следовательно, и неуправляемых входных параметров z1, z2, z3…zm. Сюда относятся параметры, оказывающие случайные возмущающие воздействия на процесс.

Вполне понятно, что при исследовании процесса чаще всего работают с первой группой входных параметров. Однако следует помнить, что соответствие полученных результатов эксперимента исследуемому процессу зависит от того, насколько полно в модели будут учтены все те входные параметры, которые в большей степени влияют на функцию отклика и её конкретные значения.

При моделировании, как правило, анализируется не все многообразие явлений, определяющих исследуемый процесс, а лишь те, которые существенны для решения поставленной задачи.

Модель – это упрощенная система, отражающая отдельные, наиболее существенные моменты исследуемого процесса. Один процесс можно описать различными моделями, в то время как одна модель может описывать различные процессы. При этом удается использовать результаты моделирования одних процессов для описания других, полученных с учетом их различной физической природы.

Процесс моделирования должен удовлетворять следующим требованиям:

1. эксперимент на модели должен быть проще, оперативнее и экономичнее, чем на объекте;

2. должно быть известно правило, по которому можно перенести результаты исследования модели на объект.







Дата добавления: 2015-09-06; просмотров: 802. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия