Студопедия — Поверхностные состояния
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поверхностные состояния






Увеличение доли атомов, находящихся в поверхностных состояниях, приводит к:

- увеличению реакционной способности нанокластеров,

- росту аморфизации структуры,

- увеличению потенциальной энергии системы,

- увеличению скорости диффузии,

- увеличению вклада поверхностных слоев в теплоемкость, спектр колебаний электронов, электро- и теплопроводность.

 

Высокая каталитическая активность наночастиц

Как известно, катализаторы позволяют проводить химические реакции более эффективно, с большей скоростью и при более низких температурах. В качестве катализаторов обычно применяют малые частицы металлов или сплавов, расположенные изолированно на подложке с развитой поверхностью.

Высокая каталитическая активность наночастиц обусловлена, в частности, следующими причинами:

- большой долей атомов наночастиц, находящихся на поверхности и имеющих возможность взаимодействовать с внешней средой;

- высокой концентрацией реакционно активных мест (так, в случае золота реакционно активными местами для развития каталитических реакций являются вершины и ребра наночастиц, а в случае платины – грани наночастиц);

- соответствием разницы между энергетическими уровнями электронов в металлических нанокластерах, имеющих размер порядка 2 нм, тепловой энергии kT при Т ~300К;

- электронным эффектом, заключающимся в изменении электронной конфигурации атомов, находящихся на поверхности частиц, по сравнению с внутренними атомами.

 

Зависимость температуры плавления металлических нанокластеров от их размера.

Равновесие данного фазового состояния (газообразного, жидкого, твердого) системы частиц, например, атомов, оценивается исходя из стремления к минимуму свободной энергии, в частности, свободной энергии Гиббса G.

Температуру плавления отдельных кристаллических нанокластеров определяют как температуру, при которой частицы одинакового состава и массы, находящиеся как в жидком, так и в твердом состоянии имеют одинаковую величину G.

В случае перехода нанокластера сферической формы радиуса R из твердого в жидкое состояние происходит изменение свободной энергии D G

D G = D Gv 4p R 3rт/3 + Dg4p R 2,

где D Gv – молярное изменение свободной энергии при плавлении, rт молярная плотность твердого материала, Dg – разница удельных поверхностных энергий жидкого и твердого состояний.

Изменение энергии D Gv 4p R 3rт/3 возникает за счет плавления нанокластера данного объема, а Dg4p R 2 соответствует разнице поверхностной энергии жидкого и твердого нанокластеров.

Плавление нанокластеров ниже температуры плавления Т пл тела макроразмеров сопровождается увеличением Gv (+D Gv)и уменьшением g (- Dg). Отсюда

D G = DGv4p R 3rт/3 - Dg4p R 2

В этом случае графическая зависимость D Gv, Dg s и D G от R имеет вид (рис. 1.5)

 

Рис. 1.5. Изменение свободной энергии нанокластера при увеличении его размера

Из анализа соотношения для D G и кривой D G от R следует, что равенство свободных энергий (D G = 0) наступает при некотором размере кластера R кр

R кр = 3Dg/rтD Gv

Если R меньше R кр, то нанокластер находится в жидком состоянии, если больше R кр то в твердом.

Так как при переходе из твердого в жидкое состояние происходит увеличение объема D V металлического нанокластера, то можно принять, что D Gv соответствует работе по изменению объема кластера D V и связанным с этим изменением давления D p

D Gv ≈ D V D p

Используя известное из молекулярной физики уравнение Клайперона-Клаузиуса для фазового перехода можно записать

D V ∙D p = Q плD Т /Т пл,

тогда

D Gv = Q плD Т /Т пл,

где D Т – разница температур плавления массивного материала и нанокластера радиуса R кр.

В результате

R кр =3Dg/(rт Q плD Т/ Т пл)

Отсюда следует, что температура плавления нанокластера Т(R) = Т пл - D Т зависит от его размера (рис. 1.6-)

Т(R) = Т пл (1 – 3Dg/(rт Q пл R кр))

 

Рис. 1.6. Зависимость температуры плавления нанокластера Т(R) от его размера.

 







Дата добавления: 2015-10-12; просмотров: 625. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия