Студопедия — Численное решение обыкновенных дифференциальных уравнений
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Численное решение обыкновенных дифференциальных уравнений






Краткое введение. Дифференциальное уравнение первого порядка,разрешенное относительно производной, имеет вид

y ' = f (x,y). (1)

Решением дифференциального уравнения (1) называется функция φ (x), подстановка которой в уравнение обращает его в тождество: φ ' (x) = f (x, φ (x)). График решения y = φ (x) называется интегральной кривой.

Задача Коши для дифференциального уравнения (1) состоит в том, чтобы найти решение уравнения (1), удовлетворяющему начальному условию

(2)

пару чисел (x0, y0 ) называют начальными данными. Решение задачи Коши называется частным решением уравнения (1) при условии (2).

Численное решение задачи Коши (1) - (2) состоит в том, чтобы получить искомое решение φ (x) в виде таблицы его приближенных решений для заданных значений аргумента x на некотором отрезке [ a, b ]:

X0 = a, x 1, x 2,..., x m = b (3)

Точки (3) называются узловыми точками, а множество этих точек называется сеткой на отрезке [ a, b ]. Будем использовать равномерную сетку с шагом h:

h = (b - a) / m; x i - x i - 1 = h или x i = x 0 + ih (i = 1,..., m).

Приближенные значения численного решения задачи Коши в узловых точках x i обозначим через y i; таким образом,

(i = 1,..., m).

Для любого численного метода решения задачи (1) - (2) начальное условие (2) выполняется точно, т. е. .

Величина погрешности численного метода решения задачи Коши на сетке отрезка

[ a, b ] оценивается величиной

,

Говорят, что численный метод имеет p - й порядок точности по шагу h на сетке, если расстояние d можно представить в виде степенной функции от h:

, p > 0,

где c - некоторая положительная постоянная, зависящая от правой части уравнения (1) и от рассматриваемого метода. В данном случае очевидно, что когда шаг h стремится к нулю, погрешность d также стремится к нулю.

Метод Эйлера. Простейшим численным методом решения задачи Коши (1) - (2) является метод Эйлера.

Угловой коэффициент касательной к интегральной кривой в точке P0 (x0, y0) есть

y '0 = f (x0,y0 ).

Найдем ординату y1 касательной, соответствующей абсциссе x 1 = x 0 + h. Так как уравнение касательной к кривой в точке P 0 имеет вид y - y0 = y ' (x - x0 ), то

y1 = y0 + h f (x0, y0 ).

Угловой коэффициент в точке P1 (x1 ,y1) также находится из данного дифференциального уравнения y'1 = f(x1,y1). На следующем шаге получаем новую точку P2 (x2 ,y2), причем

x2 = x1 + h, y2 = y1 + hf(x1 ,y1).

Продолжая вычисления в соответствии с намеченной схемой, получим формулы Эйлера для m приближенных значений решения задачи Коши с начальными данными (x0, y0) на сетке отрезка [ a, b ] с шагом h:

xi = xi -1 + h, yi = yi - 1 + hf(xi - 1 , yi - 1 ) (i = 1,2,..., m) (4)

Графической иллюстрацией приближенного решения является ломаная, соединяющая последовательно точки P0 , P1, P2,...,Pm, которую называют ломаной Эйлера.

Погрешность метода Эйлера можно оценить неравенством

или представить в виде

, где .

Это означает, что метод Эйлера имеет первый порядок точности. В частности, при уменьшении шага h в 10 раз погрешность уменьшится примерно в 10 раз.

Практическую оценку погрешности решения, найденного на сетке с шагом h/2, в точке производят с помощью приближенного равенства - правила Рунге:

, (5)

где p - порядок точности численного метода. Таким образом, оценка полученного результата по формуле (5) вынуждает проводить вычисления дважды: один раз с шагом h, другой - с шагом h/2.

Методы Рунге - Кутта. Численные методы решения задачи Коши

,

на равномерной сетке { x0 = a, x1 , x2 ,...,xm = b}отрезка[ a, b ]с шагом

h = (b -a ) / m являются методами Рунге - Кутта, если, начиная с данных (x0,y0 ), решение ведется по следующим рекуррентным формулам

(6)

Метод называют методом Рунге - Кутта порядка p,если он имеет p - й порядок точности по шагу h на сетке. Порядок точности p достигается с помощью формул (6) при определенных значениях коэффициентов cj и dj(j = 1,2,...,p); c1 всегда полагают равным нулю.

Метод Рунге - Кутта второго порядка называют методом Эйлера - Коши, если p = 2,

c1 = 0, c2 = 1, d1 = d2 = 1/2. Алгоритм Эйлера - Коши получается из формул (6):

 

xi =xi-1 + h, yi = yi-1 + Δyi-1, Δyi-1 = (1/2)[ k1[i -1] + k2[i -1]] (i = 1,..., m), (7)

k1[ i - 1] = hf (xi-1,yi-1), k2[ i - 1 ] = hf (xi-1 + h, yi-1 + hf (xi-1 ,yi-1))

 

Для практической оценки погрешности решения можно применять правило Рунге, полагая в формуле (5) р = 2.

Метод Рунге - Кутта четвертого порядка называют классическим методом Рунге - Кутта, если p = 4, c1 = 0, c2 = c3 = 1/2, c4 = 1, d1 = d4 = 1/6, d2 = d3 =1/3.

Из рекуррентных формул (6)получим алгоритм решения задачи Коши классическим методом Рунге - Кутта:

 

x I = x i - 1 + h, y i = y i - 1 + Δy i – 1 (i = 1,2,..., m),

Δyi-1 = 1/6 [ k1[ i - 1] + 2 k2[ i - 1] + 2k3[ i - 1] + k4[ i - 1] ],

k1[ i - 1] = h f (xi - 1, yi -1),

k2[ i - 1 ] = h f(xi - 1 + (1/2) h, y i - 1 + (1/2)k1[ i - 1 ]),

k3[ i - 1] = h f (xi - 1 + (1/2)h, y i - 1 + (1/2)k2[ i - 1 ]),

k4[ i - 1 ] = h f(xi - 1 + h, y i - 1 + k3[ i - 1 ]),

Графиком приближенного решения является ломаная, последовательно соединяющая точки

Pi(xi, yi) ( i = 0, 1, 2,..., m ). С увеличением порядка численного метода звенья ломаной приближаются к ломаной, образованной хордами интегральной кривой y = φ(x), последовательно соединяющими точки (xi, φ(xi)) на интегральной кривой.

Правило Рунге (5) практической оценки погрешности решения для численного метода четвертого порядка имеет вид

 







Дата добавления: 2015-09-18; просмотров: 490. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия