Студопедия — Нанопорошки: получение и свойства
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нанопорошки: получение и свойства






Формирование нано- или ультрадисперсных структур происходит в условиях, сопровождающихся процессами кристаллизации, рекристаллизации, фазовых превращений, интенсивной пластической деформации, полной или частичной кристаллизации аморфных структур.

Выбор метода получения наноматериалов определяется областью их применения, нужным набором свойств конечного продукта. Характеристики получаемого продукта — гранулометрический состав и форма частиц, содержание примесей, величина удельной поверхности — могут колебаться в зависимости от способа получения в весьма широких пределах. Так, в зависимости от условий получения, нанопорошки могут иметь сферическую, гексагональную, хлопьевидную, игольчатую формы, аморфную или мелкокристаллическую структуру. Методы получения ультрадисперсных материалов разделяют на химические, физические, механические и биологические.

Химические методы синтеза включают различные реакции и процессы, в том числе процессы осаждения, термического разложения или пиролиза, газофазных химических реакций, восстановления, гидролиза, электроосаждения. Регулирование скоростей образования и роста зародышей новой фазы осуществляется за счет изменения соотношения количества реагентов, степени пересыщения, а также температуры процесса.

Способ осаждения заключается в осаждении различных соединений металлов из растворов их солей с помощью осадителей. Продуктом осаждения являются гидроксиды металлов. В качестве осадителя используют растворы щелочей натрия, калия и другие. Регулируя рН и температуру раствора, создают условия, при которых получаются высокие скорости кристаллизации и образуется высокодисперсный гидроксид. Этим методом можно получать порошки сферической, игольчатой, чешуйчатой или неправильной формы с размером частиц до 100 нм.

Нанопорошки сложного состава получают методом соосаждения. В этом случае в реактор подают одновременно два или более растворов солей металлов и щелочи при заданной температуре и перемешивании. В результате получают гидроксидные соединения нужного состава.

Способ гетерофазного взаимодействия осуществляют путем ступенчатого нагрева смесей твердых солей металлов с раствором щелочи с образованием оксидной суспензии и последующим восстановлением металла. Таким способом получают металлические порошки с размером частиц в пределах 10...100 нм.

Гель-метод заключается в осаждении из водных растворов нерастворимых металлических соединений в виде гелей. Следующая стадия — восстановление металла. Этот способ применяется для получения порошков железа и других металлов.

Способ восстановления и термического разложения — обычно это следующая операция после получения в растворе ультрадисперсных оксидов или гидроксидов с последующим осаждением и сушкой. В качестве восстановителей, в зависимости от вида требуемого продукта, используют газообразные восстановители — как правило, водород, оксид углерода или твердые восстановители.

Нанопорошки Fе, W, Ni, Со, Сu и ряда других металлов получают восстановлением их оксидов водородом. В качестве твердых восстановителей используют углерод, металлы или гидриды металлов. Таким способом получают нанопорошки металлов: Мо, Сr, Рt, Ni и другие. Как правило, размер частиц находится в пределах 10...30 нм. Более сильными восстановителями являются гидриды металлов — обычно гидрид кальция. Так получают нанопорошки Zr, Hf, Та, Nb.

В ряде случаев нанопорошки получают путем разложения формиатов, карбонатов, карбонилов, оксалатов, ацетатов металлов в результате процессов термической диссоциации или пиролиза. Так, за счет реакции диссоциации карбонилов металлов получают порошки Ni, Мо, Fе, W, Сr. Путем термического разложения смеси карбонилов на нагретой подложке получают полиметаллические пленки.

Ультрадисперсные порошки металлов, оксидов, а также смесей металлов и оксидов получают путем пиролиза формиатов металлов. Таким способом получают порошки металлов, в том числе Мn, Fе, Са, Zr, Ni, Со, их оксидов и металлооксидных смесей.

Физические методы. Способы испарения (конденсации), или газофазный синтез получения нанопорошков металлов, основаны на испарении металлов, сплавов или оксидов с последующей их конденсацией в реакторе с контролируемой температурой и атмосферой. Фазовые переходы пар — жидкость — твердое тело или пар — твердое тело происходят в объеме реактора или на поверхности охлаждаемой подложки или стенок. Сущность способа состоит в том, что исходное вещество испаряется путем интенсивного нагрева, с помощью газа-носителя подается в реакционное пространство, где резко охлаждается. Нагрев испаряемого вещества осуществляется с помощью плазмы, лазера, электрической дуги, печей сопротивления, индукционным способом, пропусканием электрического тока через проволоку.

Возможно также бестигельное испарение. В зависимости от вида исходных материалов и получаемого продукта, испарение и конденсацию проводят в вакууме, в инертном газе, в потоке газа или плазмы. Размер и форма частиц зависят от температуры процесса, состава атмосферы и давления в реакционном пространстве. В атмосфере гелия частицы будут иметь меньший размер, чем в атмосфере аргона — более плотного газа. Таким методом получают порошки Ni, Мо, Fе, Тi, Аl. Размер частиц при этом — десятки нанометров.

Способ получения наноматериалов путем электрического взрыва проволок (проводников). В этом случае в реакторе между электродами помещают проволоки металла, из которого намечается получение нанопорошка, диаметром 0,1...1,0 мм. На электроды подают импульс тока большой силы (104...106 А/мм2). При этом происходит мгновенный разогрев и испарение проволок. Пары металла разлетаются, охлаждаются и конденсируются. Процесс идет в атмосфере гелия или аргона. Наночастицы оседают в реакторе. Таким способом получают металлические (Тi, Со, W, Fе, Мо) и оксидные (TiO2, Аl2O3, ZrO2) нанопорошки с крупностью частиц до 100 нм.

Механические методы. Способы измельчения материалов механическим путем в мельницах различного типа — шаровых, планетарных, центробежных, вибрационных, гироскопических устройствах, аттриторах и симолойерах (высокоэнергетических измельчительных аппаратах с неподвижным корпусом—барабаном с мешалками, передающими движение шарам в барабане). Измельчение размалываемого материала размалывающими шарами в отличие от других типов измельчающих устройств происходит главным образом не за счет удара, а по механизму истирания. Емкость барабанов в установках этих двух типов достигает 400...600 л. Механическим путем измельчают металлы, керамику, полимеры, оксиды, хрупкие материалы. Степень измельчения зависит от вида материала. Так, для оксидов вольфрама и молибдена получают крупность частиц порядка 5 нм, для железа — порядка 10...20 нм.

Разновидностью механического измельчения является механосинтез, или механическое легирование, когда в процессе измельчения происходит взаимодействие измельчаемых материалов с получением измельченного материала нового состава. Так получают нанопорошки легированных сплавов, интерметаллилов, силицидов и дисперсноупрочненных композитов с размером частиц 5...15 нм. Достоинством способа является то, что за счет взаимодиффузии в твердом состоянии здесь возможно получение «сплавов» таких элементов, взаимная растворимость которых при использовании жидкофазных методов пренебрежимо мала. Положительной стороной механических способов измельчения является сравнительная простота установок и технологии, возможность измельчать различные материалы и получать порошки сплавов, а также возможность получать материал в большом количестве. К недостаткам метода относятся возможность загрязнения измельчаемого порошка истирающими материалами, а также трудности получения порошков с узким распределением частиц по размерам, сложности регулирования состава продукта в процессе измельчения.

При получении наночастиц любым методом проявляется еще одна их особенность — склонность к образованию объединений частиц. Такие объединения называют агрегатами и агломератами. В результате, при определении размеров наночастиц, необходимо различать размеры отдельных частиц (кристаллитов) и размеры объединений частиц. В агрегатах кристаллиты более прочно связаны и имеют меньшую межкристаллитную пористость, чем в агломератах. Агрегирование и агломерирование наночастиц осложняет получение компактных материалов. Требуются большие механические усилия или повышение температуры (при спекании), чтобы преодолеть силы агломерирования. При компактировании агрегированного порошка путем спекания, для достижения определенной плотности материала требуются температуры тем выше, чем более крупные объединения наночастиц имеются в порошке. Для исключения или уменьшения степени образования объединений наночастиц, в методах получения нанопорошков путем конденсации из паровой фазы оказалось целесообразным точное регулирование температуры образования наночастиц. В химических методах оказывается эффективным исключение воды из некоторых стадий синтеза для уменьшения степени агломерирования. Используются также методы уменьшения контакта между частицами путем их покрытия (капсулирования), которое затем, перед компактированием, удаляется.

 







Дата добавления: 2015-09-15; просмотров: 1364. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия