Студопедия — Новые материалы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Новые материалы






 

Роль новых материалов с каждым годом возрастает. По оценке американских экспертов в ближайшие 20 лет 90% современных материалов будут заменены принципиально новыми, что приведет к технической революции практически во всех отраслях техники. За последние годы в США стали использоваться тысячи марок новых и новейших материалов.

Существуют конструкционные и функциональные новые материалы, к последним относят:

- аморфные материалы, для получения которых необходимо охлаждать металлы со скоростью более миллиона градусов в секунду, после чего они приобретают структуру стекла и удивительное сочетание физико-механических и химических свойств;

- «интеллектуальные» или «умные» материалы, характерной особенностью которых является способность запоминать, отслеживать и возвращать деформацию и форму конструкции;

- интерметаллические материалы;

- композиционные материалы на металлической, полимерной или углеродной матрице;

- ультрадисперсные и нанофазные материалы, элементарный размер фрагментов структуры в которых составляет менее сотых и тысячных долей микрона;

- алмазноподобные сверхтвердые пленки;

- функционально-градиентные покрытия и др.

Особенность новых и новейших материалов, в отличие от традиционных, состоит в их более тесной взаимосвязи с технологией переработки в изделие. В ряде случаев процесс изготовления материалов и изделия из него составляет единое целое.

Большое число технологических методов обработки и технологических процессов (например, реактивная и инжекционная формовка, экструзия, сверхпластичная формовка, высокоскоростное охлаждение, порошковая металлургия, лазерные технологии, высокоэнергетическое ионноплазменное напыление и другие) интенсивно развивались в последние годы и в начале XXI века будут определять рынок высокотехнологичного оборудования.

О тенденциях развития мирового рынка новых материалов с 1980 по 2000г. свидетельствуют данные таблицы 30-31, которыми подтверждаются преобладающие темпы роста новейших материалов по сравнению с традиционными.

Вклад новейших конструкционных и функциональных материалов в стоимость перспективных видов вооружений и глубоководной техники составляют от 40 до 85%. Они являются опорной базой модернизации электроники, подводных лодок и новых типов кораблей и судов, ракетно-космической техники и авиации.

 

Таблица 30

Прогноз развития мирового рынка новых материалов

Новые материалы Средние ежегодные темпы роста получения материалов (с 1980 до 2000 г.) %
Новые чугуны и стали 2.3
Цветные сплавы и новые металлы 3.8
Композиционные материалы 8.7
Конструкционная керамика 13.9
Функциональные материалы 12.0

Таким образом, не вызывает сомнения тесная связь между использованием новых материалов и конкурентной способностью промышленной продукции. Уровень разработки новых материалов в различных странах мира, составленный по данным экспертов США и стран Западной Европы, приведен в таблице 31.

Таблица 31

Относительный уровень разработки новых материалов

Наименование материалов Страны НАТО Япония Россия и страны СНГ Прочие страны
Конструкционные материалы ++++ ++++ ++++ ++
Высокотемпературные материалы ++++ +++ ++++ ++
Материалы для защиты от электро-магнитных излучений и бронематериалы ++++ +++ +++++ ++
Электронные, магнитные и оптические материалы ++++ ++++ ++ ++
Материалы со специальными свойствами и био-молекулярные материалы ++++ ++++ + ++

Особый класс новых материалов – наноструктурные материалы. На которых остановимся подробнее, так как их интенсивные разработки ведут и в Казахстане.

Наноструктурные материалы создаются с использованием нанотехнологий и обладает рядом уникальных свойствам. К этому классу относят материалы с размером структурных элементов менее 100нм.

 

По геометрическим признакам структурные элементы наноматериалов можно разделить на:

- нольмерные атомные кластеры и частицы;

- одно- и двухмерные мультислои, покрытия и ламинарные структуры (квантовые проводники, нанотрубки тонкие пленки);

- трехмерные объемные нанокристаллические и нанофазные материалы (многослойные структуры с наноразмерными дислокациями, сверхрешетки, нанокластеры).

В настоящее время широко используются следующие типы наноматериалов: нановолокна и нанотрубки, нанопленки и нанопокрытия, нанодисперсии и начинают получать все большее применение объемные наноматериалы – нанокристаллические и нанозернистые (с размером зерен менее 100 нм).

Свойства наноматериалов, как правило, отличаются от аналогичных материалов в массивном состоянии. Первые исследования наноматериалов показали, что в них изменяются, по сравнению с обычными материалами, такие фундаментальные характеристики, как удельная теплоемкость, модуль упругости, коэффициент диффузии. У наноматериалов можно наблюдать изменение магнитных и электропроводных свойств. Для особо мелких материалов можно заметить изменение температуры плавления в сторону ее уменьшения.

По мере того как размер зерен или частиц становится все меньше и меньше, все большая доля атомов оказывается на границах или свободных поверхностях. Так, при размере структурных единиц 6 нм и толщине поверхностного слоя в один атом, почти половина атомов будет находиться на поверхности. Так как доля поверхностных атомов в наноматериалах составляет десятки процентов, ярко проявляются все особенности поверхностных состояний. Развитая поверхность оказывает влияние как на решеточную, так и на электронную подсистемы. Поведение наноматериалов определяется процессами на границе частиц или зерен. Появляются аномалии поведения электронов, квазичастиц (фононов, плазмонов, магнонов) и других элементарных возбуждений, которые влекут за собой изменения физических свойств, по сравнению с массивными материалами. Если считать, что зерна имеют сферическую форму, и полагать, что толщина слоя 1нм (это соответствует 2-3 атомным слоям для большинства металлов), то получаются следующие соотношения между диаметром зерна и объемной долей поверхностного слоя:

 







Дата добавления: 2015-09-15; просмотров: 493. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия