Студопедия — Вспомогательные неравенства
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вспомогательные неравенства






Предложение 1. Пусть и - вещественные числа, связанные соотношением

, (4.1)

тогда для любых неотрицательных чисел и имеет место неравенство

. (4.2)

Доказательство. Можно полагать, что . Рассмотрим функцию , где , a , и согласно (4.1) . Найдем производную . Анализ производной показывает, что наибольшего значения функция достигает при . Поэтому или

. (4.3)

Полагая в неравенстве (4.3) и учитывая связь , получим

. (4.4)

Умножим это неравенство на

. (4.5)

Наконец, учитывая соотношение , найдем

.

Предложение доказано.

Неравенство Гельдера. Для произвольных чисел и справедливо неравенство Гельдера

. (4.6) Доказательство. Введем обозначения

, , , . (4.7)

Запишем неравенство (4.2)

и просуммируем по . В результате получим

 

. (4.8)

Используя соотношения , и переходя от величин , к величинам , , из (4.8) найдем

. (4.9)

Отсюда следует неравенство Гельдера

. (4.10)

Неравенство доказано.

Неравенство Гельдера для бесконечных сумм. Пусть даны бесконечные последовательности чисел и .

Предположим, что сходятся числовые ряды , . Переходя в неравенстве (4.10) к пределу, когда , получим

. (4.11)

Неравенство Коши-Буняковского получается как частный случай неравенства Гельдера, когда

. (4.12) Интегральное неравенство Гельдера. Имеет место неравенство

. (4.13)

Доказательство. Полагаем, что существуют интегралы, входящие в правую часть (4.13). Введем следующие обозначения

, , , . (4.14)

Применяя неравенство (4.2) к функциям и , получим

.

Проинтегрируем это неравенство и учтем обозначения (4.14). В итоге найдем

.

Отсюда следует

.

Неравенство доказано.

Интегральное неравенство Коши-Буняковского получается как частный случай,

когда

. (4.15)

Неравенство Минковского. Для , произвольных чисел и справедливо неравенство Минковского

. (4.16)

Доказательство. Достаточно ограничиться случаем , , .

Имеем

. (4.17)

При справедливость неравенства (4.16) очевидна. Полагая , введем с тем, чтобы . Далее к каждому слагаемому в правой части (4.17) применим неравенство Гельдера. В результате будем иметь

. (4.18) Заметим, что . Умножая обе части (4.18) на

,

получим

.

С учетом равенства получаем окончательное доказательство неравенства Минковского.

Неравенство Минковского для бесконечных сумм. Пусть даны бесконечные последовательности чисел и .

Предположим, что сходятся числовые ряды , . Переходя в неравенстве (4.16) к пределу, когда , получим неравенство Минковского

. (4.19)

 

Интегральное Неравенство Минковского.. Справедливо неравенство

, (4.20)

где , а и - произвольные функции.

Доказательство. Имеем

. (4.21)

Введем число такое что . Применяя к слагаемым в правой части (4.21) интегральное неравенство Гельдера, получим

. (4.22)

Умножая обе части (4.22) на

и учитывая равенство получим

.

Так как , то имеем полное доказательство неравенства Минковского.

 

4.2. Приложение 2.







Дата добавления: 2015-08-29; просмотров: 1511. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия