Студопедия — Решение частично целочисленной задачи
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение частично целочисленной задачи






Максимизировать целевую функцию вида:

При ограничениях:

; - целoе.

a) Метод Гомори для частично целочисленных задач.

Решаем исходную задачу линейного программирования. Ее решение приведено в пункте 1.3. Последняя симплексная таблица имеет вид:

 

Таблица 2.2.1
БП СЧ x1 x2 x3 x4 x5 x6 x7 x8
x5         -5     -2  
x1 9/2       -1   -1/2    
x2 7/4       -2   1/4 -1 1/2
x3 5/4       -1   -1/4   1/2
Y -16                

Значения целевой функции и переменных:

Значение переменной не удовлетворяет требованиям целочисленности.

В соответствии с правилами формирования коэффициентов ограничений метода Гомери для частично целочисленных задач имеем:

Вводим дополнительную свободную переменную:

Выражаем новое ограничение в форме Куна-Таккера:

Решаем новую расширенную задачу линейного программирования:

 

Таблица 2.2.2
БП СЧ x1 x2 x3 x4 x5 x6 x7 x8 x9
x5         -5     -2    
x1 9/2       -1   -1/2      
x2 7/4       -2   1/4 -1 1/2  
x3 5/4       -1   -1/4   1/2  
x9 -1/2       -1   -1/2      
Y -16                  

 

Таблица 2.2.3
БП СЧ x1 x2 x3 x4 x5 x6 x7 x8 x9
x5         -5     -2    
x1                   -1
x2 3/2       -5/2     -1 1/2 ½
x3 3/2       -1/2       1/2 -1/2
x6                   -2
Y -17                  

Полученное оптимальное решение удовлетворяет поставленным ограничением и требованию целочисленности переменной .

Ответ: .

 

б) Метод ветвей и границ.

Проанализировав ограничения определим границы следующим образом:

Т.к. о целевой функции ничего не известно, примем .

Решаем Задачу 1 – исходную задачу линейного программирования. Ее решение приведено в пункте 1.3. Последняя симплексная таблица имеет вид:

 

Таблица 2.2.4
БП СЧ x1 x2 x3 x4 x5 x6 x7 x8
x5         -5     -2  
x1 9/2       -1   -1/2    
x2 7/4       -2   1/4 -1 1/2
x3 5/4       -1   -1/4   1/2
Y -16                

Значения целевой функции и переменных:

Принимаем

Полученное решение не удовлетворяет требованиям целочисленности для переменной .

Поэтому составляем относительно первой задачи две новых порожденных задачи:

Задача 2.

Максимизировать целевую функцию вида:

При ограничениях:

;

- новое ограничение.

Преобразуем новую систему ограничений Задачи 2, введя свободные переменные и приведя их к форме Куна-Таккера:

Воспользуемся симплекс методом и решим Задачу 2.

 

 

Таблица 2.2.5
БП СЧ x1 x2 x3 x4 x5 x6 x7 x8 x9
x5 -3 -1 -2              
x6 -9 -2                
x7 -5 -1 -1              
x8 -2 -1     -1          
x9                    
Y       -3            

 

 

Таблица 2.2.6
БП СЧ x1 x2 x3 x4 x5 x6 x7 x8 x9
x5 3/2   -2   -1   -1/2      
x1 9/2       -1   -1/2      
x7 -1/2   -1       -1/2      
x8 5/2       -2   -1/2      
x9 -1/2           1/2      
Y -18     -3            

 

Таблица 2.2.6
БП СЧ x1 x2 x3 x4 x5 x6 x7 x8 x9
x5 5/2     -2 -3   1/2 -2    
x1 9/2       -1   -1/2      
x2 ½     -1 -1   1/2 -1    
x8 5/2       -2   -1/2      
x9 -1/2           1/2      
Y -37/2     -2     3/2      

 

Допустимого решения Задачи 2 не существует.

Поэтому примем

Выбираем и решаем Задачу 3.

Максимизировать целевую функцию вида:

При ограничениях:

;

- новое ограничение.

Преобразуем новую систему ограничений Задачи 3, введя свободные переменные и приведя их к форме Куна-Таккера:

Воспользуемся симплекс методом и решим Задачу 2.

 

Таблица 2.2.7
БП СЧ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x5 -3 -1 -2                
x6 -9 -2                  
x7 -5 -1 -1                
x8 -2 -1     -1            
x9 -5 -1                  
x10                      
Y       -3              

 

Таблица 2.2.8
БП СЧ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x5 3/2   -2   -1   -1/2        
x1 9/2       -1   -1/2        
x7 -1/2   -1       -1/2        
x8 5/2       -2   -1/2        
x9 -1/2       -1   -1/2        
x10 3/2           1/2        
Y -18     -3              

 

Таблица 2.2.8
БП СЧ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x5 5/2     -2 -3   1/2 -2      
x1 9/2       -1   -1/2        
x2 1/2     -1 -1   1/2 -1      
x8 5/2       -2   -1/2        
x9 -1/2       -1   -1/2        
x10 3/2           1/2        
Y -37/2     -2     3/2        

 

Таблица 2.2.9
БП СЧ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x5       -2 -4     -2      
x1                   -1  
x2       -1 -2     -1      
x8         -1         -1  
x6                   -2  
x10                      
Y -20     -2              

 

Таблица 2.2.10
БП СЧ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x5         -5     -2      
x1                   -1  
x2 3/2       -5/2     -1 1/2 1/2  
x3 3/2       -1/2       1/2 -1/2  
x6                   -2  
x10                      
Y -17                    

Полученное оптимальное решение удовлетворяет поставленным ограничением и требованию целочисленности переменной . Поэтому принимаем

Т.к. список задач, подлежащих решению пуст, то можно сделать вывод о том, что решение задачи целочисленного программирования завершено.

Ответ:

Рис 2.2.1 Блок схема решения.

 

На основе полученных результатов решения задачи методом Гомори и методом ветвей и границ, можно сделать вывод о том, метод Гомори менее трудоемок. Однако, стоит учесть простоту решаемой задачи, в которой требование целочисленности наложено всего на одну переменную из трех. Метод Гомори в данном случае позволяет получить оптимальное решение с использованием всего одного уравнения отсекающей плоскости и решением одной расширенной задачи. Используя метод ветвей и границ, приходится решать уже две порожденных задачи, т.е. использование этого метода в данном случае менее эффективно. Таким образом можно сделать вывод о том, что метод ветвей и границ вообще мало эффективен для решения простых задач, где не требуется получение всех локальных оптимумов. В таких случаях разумнее воспользоваться методом Гомори для частично целочисленных задач.


 








Дата добавления: 2015-09-07; просмотров: 415. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия