Студопедия — Параграф 5. Непрерывная случайная величина
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Параграф 5. Непрерывная случайная величина






 

Дифференциальной функцией распределения или плотностью вероятности непрерывной случайной величины называется производная ее функции распределения:

График плотности вероятности называется кривой распределения.

Свойства плотности вероятности непрерывной случайной величины:

Свойство 1. Плотность вероятности неотрицательная функция:

Доказательство.

как производная монотонно неубывающей функции .

Свойство доказано.

Свойство 2. Вероятность попадания непрерывной случайной величины в интервал от до включительно равна определенному интегралу от ее плотности в пределах от до :

Доказательство.

Согласно свойству 3 функции распределения:

Так как есть первообразная для плотности вероятности , то по формуле Ньютона-Лейбница приращение первообразной на отрезке от до включительно есть определенный интеграл .

Свойство доказано.

Свойство 3. Функция распределения непрерывной случайной величины может быть выражена через плотность вероятности по формуле:

Доказательство.

Свойство доказано.

Свойство 4. Несобственный интеграл в бесконечных пределах от плотности вероятности непрерывной случайной величины равен единице:

Доказательство.

Свойство доказано.

Математическим ожиданием или средним значением непрерывной случайной величины называется величина несобственного интеграла:

– математическое ожидание непрерывной случайной величины ;

– плотность непрерывной случайной величины ;

– возможное значение дискретной случайной величины .

Дисперсией или разбросом непрерывной случайной величины называется величина несобственного интеграла:

Все свойства математического ожидания и дисперсии дискретной случайной величины, справедливы и для непрерывных случайных величин.

Пример 1.

 







Дата добавления: 2015-12-04; просмотров: 178. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия