Студопедия — Модель нейрона с сигмоидой на выходе
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модель нейрона с сигмоидой на выходе






Структура нейрона с сигмоидой на выходе аналогична структурам ранее обсуждавшихся моделей, т.е. персептрона и нейрона типа Адалайн (см. рисунок 2.10).

Рис. 2.10. График униполярной функции активации

при различных значениях параметра β

 

Название обусловлено функцией активации, которая имеет форму сигмоидальной уни­полярной или биполярной функции. Это непрерывные функции, описываю­щиеся выражениями:

- униполярная функция

- биполярная функция

 

На рисунке 2.10 представлены графики униполярных функций при различных значениях параметра бетта. Читатель может заметить, что при малых значениях параметра бетта функция имеет плавный характер, но с ростом значения этого параметра график становится более крутым вплоть до обретения порогового вида. Огромным достоинством сигмоидальных нейронов считается дифференцируемость функции активации. Кроме того, производные этих функций легко вычисляются, поскольку они приобретают следующие формы:

- для униполярной функции:

 

(2.56)

- для биполярной функции:

(2.57)

 

Структура нейрона с сигмоидой на выходе представлена на рис. 6.11. Выходной сигнал описывается выражением

 

(2.58)

Рис. 2.11. Структура нейрона с сигмоидой на выходе

 

Мера погрешности Q определяется как квадрат разности между эталон­ным значением и значением, полученным на выходе нейрона, т.е.:

 

(2.59)

 

Так же, как и в ситуации с нейроном типа Адалайн, для обучения исполь­зуется правило наискорейшего спуска, однако теперь должна учитываться функция активации. Веса нейрона модифицируются согласно выражению

 

(2.60)

Рассчитаем производную меру погрешности относительно весов. Оче­видно, что

 

(2.61)

 

(2.62)

Следовательно

 

(2.63)

Легко заметить, что

 

. (2.64)

Введем обозначение

 

. (2.65)

 

Согласно формулам (2.60) и (2.65), веса на шаге (t +1) модифицируются следующим образом:

wi(t +1)= wi(t)-ηδxi = wi(t) + η(d - f(s)) f'(s)xi. (2.66)

 

Теперь рассмотрим альтернативный способ обучения сигмоидального нейрона с применением алгоритма RLS. Рассмотрим два случая, различаю­щиеся способом определения погрешности. В первом случае сигнал погреш­ности определяется на выходе линейной части нейрона. Поэтому мера по­грешности имеет вид

 

(2.67)

 

где

 

для униполярной функции,     для биполярной функции.
(2.68)

В этой ситуации погрешность интерпретируется как заданный сигнал на выходе линейной части нейрона. Нормальное уравнение принимает вид

 

, (2.69)

либо в векторной форме

 

r(t) = R(t) w(t), (2.70)

где

(2.71)

 

(2.72)

 

Обратим внимание, что уравнения (2.71) и (2.72) аналогичны уравнениям (2.34) и (2.35). Поэтому алгоритм RLS принимает форму

 

e(t)=b(t)- x T(t) w (t-1)=b(t)-s(t); (2.73)

 

(2.74)

 

 

P(t)=λ-1[I-g(t)xT(t)]P(t -1); (2.75)

 

w (t) = w (t -1) + g (t)e(t), (2.76)

 

причем начальные условия определяются выражением (2.55).

Во втором случае погрешность определяется на выходе нелинейной части нейрона. Мера погрешности имеет вид

 

(2.76)

В результате дифференцирования меры (2.77) относительно вектора w(t) и приравнивания полученного выражения к нулю получаем

 

(2.78)

 

Дальнейшие вычисления дают:

 

(2.79)

В результате применения подстановки Тейлора к содержимому квадрат­ных скобок формулы (2.79) получаем

 

f(b(k)) ≈ f(S(k))+f'(s(k)))b(k)-s(k)), (2.80)

где

 

b(t) = f-1(d(t)). (2.81)

 

В итоге выражения (6.79) и (6.80) сводятся к уравнению

 

. (2.82)

Уравнение (2.82) в векторной форме имеет вид

 

r (t) = R (t) w (t), (2.83)

где

(2.84)

 

(2.85)

 

При использовании в выражениях (2.73), (2.76) подстановок

 

х (k)→ f'(s(k)) x (k); (2.86)

 

b(k) → f'(s(k))b(k) (2.87)

 

получаем форму алгоритма RLS, адаптированную к обучению сигмоидального нейрона:

; (2.88)

 

(2.89)

 

(2.90)

 

(2.91)

 

Начальные условия определяются в соответствии с формулой (2.55).

 

 







Дата добавления: 2015-09-06; просмотров: 599. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Studopedia.info - Студопедия - 2014-2024 год . (0.027 сек.) русская версия | украинская версия