Студопедия — Измерение интервала времени (периода) инфосигнала
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Измерение интервала времени (периода) инфосигнала






 

В данном режиме происходит сравнение измеряемого периода исследуемого сигнала Т с с образцовым интервалом времени. При этом сигнал подается на вход 2 ЭСЧ (рис. 1, ключ в положении 2) и, далее, после соответствующего преобразования в блоках (7), (8) и (9) через блок управления (10) подается на второй вход селектора (4). В блоке (10) из исследуемого сигнала формируется прямоугольный стробирующий импульс, длительность которого совпадает с периодом сигнала или кратна ему.

Напряжение образцовой частоты от кварцевого генератора (5) через умножитель частоты (6), коммутатор (2) (положение ключа коммутатора – «2»), преобразователь (3) и далее подается на первый вход временного селектора.

Эпюры напряжений, поясняющие работу ЭСЧ в режиме измерения периода, приведены на рис. 3. Из них видно, что период исследуемого сигнала определяется выражением:

 

  Т сд = ,  

 

где Т м – период образцового сигнала (метки времени);

N – число меток, поступивших в счетный блок ЭСЧ;

n – множитель периода (для рассматриваемого случая n = 1).

 

Время счета определяется выражением:

 

  Т сч = n · T cд = N · T м (11)

 

Результат на дисплее ЭСЧ, как правило, представляется в единицах измерения выбранной «метки времени» (мс или мкс).

Положение децимальной точки при этом зависит и от значения множителя периода, и от числового значения периода временной метки.

 

 
Рисунок 3 – Эпюры напряжений в режиме измерения периода

 

Погрешность измерения периода Т сд состоит из трех составляющих: погрешности меры, преобразования и сравнения. Погрешность меры обусловлена относительной нестабильностью частоты кварцевого генератора
δкг = 5·(10-8÷10-12). Погрешность преобразования δпр обусловлена, главным образом, отношением напряжения сигнала и помехи, что влияет на формирование управляющего импульса и определяется из выражения (формула Симпсона):

 

  , (12)

 

где n – число измеренных периодов сигнала;

U П – среднеквадратическое значение напряжения помехи;

U С – среднеквадратическое значение напряжения сигнала.

 

Если = – 40 дБ и п = 1, то δпр ≈ 0,3%, если n = 100, то δпр = 0,003%.

Погрешность сравнения обусловлена погрешностью дискретности.

Абсолютная и относительная погрешности соответственно,

 

  , (13)

 

  . (14)

 

Суммарная относительная погрешность определяется по формуле:

 

  = .  

 

Для выбора оптимального режима работы с точки зрения минимизации погрешности рассмотрим следующий пример.

 

Пример. Пусть измеряется сигнал частотой ƒ;c = 100 Гц, (Т с = 10-2 с), тем же частотомером.

Определить: ∆ N, δ N, выбрать n, T м и записать результат измерений.

Решение.

Выбираем период метки (как правило, минимальное значение),

Т м = 0,1мкс = 10-7 с.

С учетом ограничения на счетный блок величина множителя n периода сигнала:

 

  <102.  

 

Поскольку 10 < n <102, то значение множителя периода принимаем n = 10.

Записываем результат измерения периода на дисплее: 10000,00 мкс.

Абсолютная погрешность

 

   

 

Относительная погрешность

 

  ,  

 

где ,

.

 







Дата добавления: 2015-08-12; просмотров: 541. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия