Студопедия — Теорема Ляпунова.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема Ляпунова.






Теперь вычислим период, для этого составим дифференциальные уравнения, которым удовлетворяют переменные ρ и θ. Вычислим

(1.15)

Заменяя в системе (1.15) производные и их выражениями из уравнений (1.8) и разрешая полученную систему относительно производных и , найдем искомые уравнения

(1.16)

Из второго уравнения определим t:

(1.17)

Для того чтобы удовлетворить условиям (1.13), необходимо константу (1.17) принять равной нулю. Используем тот факт, что ρ - аналитическая функция μ. Это позволит разложить подынтегральную функцию в выражении (1.17) в ряд по степеням μ

(1.17’)

где - периодические функции θ периода 2π. Следовательно, подынтегральная функция в (1.17’) также периодическаяфункцияθ периода 2π. Следовательно, интеграл

не зависит от θ0 и его можно записать в виде

,

где - вполне определенные числа. Таким образом, при измени θ; на 2π время t получает приращение Т

, (1.18)

не зависящие от θ0.

Пусть теперь Ф(θ) – некоторая периодическая функция θ периода 2π, тогда

. (1.19)

Рассматривая ее как функцию t, будем иметь

. (1.20)

Равенство (1.19) справедливо для любых θ, следовательно, и равенство (1.20) справедливо для любых t, т. е. Ф(t) – периодическая функция t. Значит, величина Т, определенная формулой (1.18) как функция μ, и есть период решения.

Используя (1.17), мы можем записать его в следующем виде:

где период Т стремится к периоду линейных колебаний 2π/λ, т. е. к периоду колебаний в системе (1.8) при .

Покажем теперь, что Т- четная функция μ. Вернемся сова к интегралу (1.11). рассматривая его как уравнение относительно ρ, мы получаем в окрестности точки ρ=0 два решения. Одно из них

(1.21)

другое

(1.21’)

Теперь заметим, что левая часть уравнения (1.11) не изменится, если заменим ρ на -ρ и θ на θ + 2π. Следовательно, на основании (1.21) будем иметь

(1.22)

Значение ρ, определенное рядом (1.22), будет корнем уравнения (1.11), не совпадающее с (1.21) (потому, что для малых ρ из (1.21) следует ρ = μ+О(μ2), а из (1.22) ρ = - μ+О(μ2)). Следовательно, оно будет определяться рядом (1.21’).

Сравнивая (1.21’) и (1.22), получаем

и т.д.

Отсюда следует, что если в выражении (1.21) заменить μ на – μ, а θ на θ + π, то величина ρ примет свое значение с обратным знаком:

.

Выпишем теперь выражение для периода Т. На основании (1.17) имеем

. (1.23)

Сделаем замену в (1.23) замену μ на –μ, а θ на θ + π. Тогда получим величину

.

Согласно доказанному величины и сохраняют свои значения. Следовательно, то же самое можно сказать и о функциях Х и Y. В то же время , и изменяют свои знаки. Следовательно, знаменатель изменит знак на обратный, но и числитель изменит знак на обратный. Следовательно,

.

Итак,

,

т. е. период – четная функция величины μ.

Таким образом, выше было доказано теорему Ляпунова, а теперь сформулируем ее.

Теорема Ляпунова.

Если постоянная достаточно мала, то все решения системы уравнения (1.8) ─ периодические функции t, причем период ─ четная функция величин и при стремится к. Решения системы (1.8) являются аналитическими функциями величины c ─ начального отклонения переменной x.

Имея в виду формулу

выражение периода можно переписать в следующем виде:

(1.24)

 

Раздел 2.

Условия существования периодических решений







Дата добавления: 2015-08-10; просмотров: 342. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия