Студопедия — Математическая модель АМК
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Математическая модель АМК






Составляется функция модулирующего сигнала и рассчитывается коэффициент амплитудной модуляции при M = 0.8. Соблюдаются следующие размерности: напряжение – 1 В, время – 1 мс, частота – 1 кГц, круговая частота – 1 крад/с (рис. 3.1).

 

Uo = 1; Um = 2; T = 1e-3;

tau = T/3; W = 2*pi/T; F = 1/T;

t = linspace(0,2*T,512);

s = cosinobn(t,Um,T,Uo);

figure(1)

plot(t,s)

 

Ds = max(s) - min(s);

Sam = 2*(s-min(s))/Ds - 1;

 

a = [0.2180 0.3910 0.2757 0.1378 0.0276...

-0.0276 -0.0315 -0.0098 0.0098 0.0138 0.0050];

as = 2*a/Ds; as(1) = as(1) - (2*min(s) + Ds)/Ds;

Sn = as(1);

for i=2:length(as);

c = as(i)*cos(2*pi*n(i)*t/T);

Sn = Sn+c;

end

figure(2)

plot(t,Sam,t,Sn)

Рис. 3.1. Модулирующий сигнал

Составляется m- функция АМК, в которой текущее время (переменная t) должно совпадать с подобным текущим временем при определении модулирующего сигнала s (t) в m- функция cosinobn:

 

function Uam = AMK(t,Un,Fn,s,M)

% Uam = AMK(t,Un,Fn,s,M)

 

Uam = Un*(1+M*s).*cos(2*pi*Fn*t);

 

Для определения несущей частоты проводится анализ рассчитанных в задании № 1 гармонических составляющих (переменная a) периодического модулирующего колебания.

Примем верхнюю частоту модулирующего сигнала s (t) равной частоте той гармоники, амплитуда которой (и всех последующих) меньше 1 % от величины максимальной амплитуды среди гармоник. Здесь по частоте 10-й гармоники (F 10 = 10 кГц) определим частоту несущей, которая должна быть выше от 5 до 10 раз:

F n = 5 F 10 = 50 кГц.

Зададим амплитуду несущей U n =1 В и построим осциллограмму АМК (рис. 3.2), используя следующие команды системы MATLAB:

 

Un = 1; Fn = 50e3; M = 0.8;

Uam = AMK(t,Un,Fn,Sam,M)

figure (3)

plot(t,Uam)

Рис. 3.2. Осциллограмма АМК при M = 0.8

Энергия АМ-сигнала на одном периоде повторения равна

, (3.1)

или при обращении к вычислениям в системе MATLAB:

 

dt = t(2)-t(1);

Eam = sum(Uam.^2)*dt/2*1000

3.2.2. Дискретный спектр АМК с периодическим
модулирующим сигналом

Формирование модели АМК в виде отдельных спектральных составляющих:

несущее колебание амплитудой 1 В частотой 50 кГц, что соответствует N = 50 – порядковому номеру гармоники несущего колебания, выраженному через частоту следования модулирующего колебания (1кГц);

набор 10 верхних боковых частот Svbn, n = N +(1,…,10);

набор 10 нижних боковых частот Snbn, n = N – (1,…,10).

Частота несущей равна 50 кГц, боковые составляющие отстоят от неё не более чем на 10 кГц, т.е. полоса частот АМК равна 20 кГц (рис. 3.3).

 

N = ceil(Fn/F);

a1 = as(2:end); Ng = length(a1);

Svb = M*Un*[zeros(1,N+1) a1 zeros(1,Ng-1)]/2;

Snb = M*Un*[zeros(1,N-Ng) fliplr(a1) zeros(1,2*Ng)]/2;

Spam = Svb+Snb;

Spam(N+1) = Un*(1+M*as(1));

figure(4)

n = 0:N+2*Ng-1;

stem(n, Spam)

Рис. 3.3. Амплитудный спектр АМК (M = 0.8)

Как следует из рис. 3.4, превышение нормированной энергетической характеристикой уровня 0.95 происходит при учете 53 гармоник частоты следования, то есть частоту FАМ = 53 кГц можно считать верхней частотой спектра исследуемого АМК. Полоса частот 2D f ам, занимаемая АМК, как уже указывалось, составляет 20 кГц.

 

Eam = cumsum(Spam.^2)/2; % Значение Eam = 0.3111 В2×мс

Eam = Eam/max(Eam);

n1 = (N-Ng)LN+Ng);

figure(5)

plot(n1,Eam(n1+1),n1,0.95*ones(1,length(n1)))

 







Дата добавления: 2015-08-12; просмотров: 544. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия