Студопедия — Седиментация и диффузия. Гипсометрический закон. Седиментационно-диффузионное равновесие. Скорость седиментации
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Седиментация и диффузия. Гипсометрический закон. Седиментационно-диффузионное равновесие. Скорость седиментации






Грубодисперсные системы под действием гравитационных сил будут оседать (седиментировать). В результате в системе устанавливается определенное равновесие распределения частиц по высоте. Коллоидные системы по устойчивости занимают промежуточное положение между истинными растворами (max) и грубодисперсными растворами (min). На каждую частицу дисперсной фазы действует 3 силы:

1. Сила тяжести F т.

2. Архимедова сила F A.

3. Сила трения F тр.

Сила седиментации будет результирующей между первой и второй силой

Если, F сед > 0 - происходит оседание частиц. Если F сед < 0 - то частицы всплывают. Результирующая сила, действующая на частицу: где B - коэффициент трения; U - скорость седиментации. Сила трения, согласно закону Стокса Отсюда уравнение скорости оседания и радиуса частиц Результатами седиментационного анализа может служить интервал радиусов частиц в данной системе, просто радиус частиц или доля фракций определенного радиуса. Способность к седиментации принято выражать через константу седиментации S, которая определяется скоростью седиментации: Для сферических частиц эта константа равна

Часто для характеристики процесса седиментации используют удельный поток седиментации I сед.

Удельный поток седиментации - это число частиц, оседающих в единицу времени через сечение единичной площади, нормальное к направлению седиментации.

Размерность: [ i сед] = част/см2 * с.

Из определения i сед следует: i сед = Uсед * v, где v - частичная концентрация частиц в дисперсной системе.

Подставив в это уравнение U сед, получим:

Таким образом, удельный поток прямо пропорционален V, v, (? - ?о) и обратно пропорционален S. Подставив эти выражения в уравнение, получим

Значит, в случае сферических частиц удельный поток прямо пропорционален квадрату радиуса и обратно пропорционален вязкости среды.

Рассматривая процесс седиментации, мы не учитываем броуновского движения, в котором участвуют частицы. Следствием броуновского движения, является диффузия, которая стремится выровнять концентрацию частиц по всему объёму, в то время как седиментация приводит к увеличению концентрации в нижних слоях.

Таким образом, наблюдается два противоположных потока: поток седиментации i сед и поток диффузии i диф. где

В результате конкуренции этих потоков возможны три варианта:

Чтобы выполнилось это неравенство, значения Т и должны быть малы, а (? - ?о) и v - велики. В реальных условиях эти параметры заметно изменить сложно, а радиус частиц в дисперсных системах изменяется в широком интервале: от 10-7 до 10-2 см и именно радиус частиц является определяющим. Установлено, что данное неравенство соблюдается, когда r 10-3 см. В этих случаях диффузией можно пренебречь, идёт быстрая седиментация - система является седиментационно неустойчивой.

Гетероадагуляция - прилипание частиц дисперсной фазы к вводимой в систему чужеродной поверхности.

Одной из причин этого явления является адсорбция стабилизатора на этой поверхности. Например: отложение коллоидных частиц на волокнах при крашении и дроблении.

Для гидрофобных золей в качестве ВМС обычно используют белки, углеводы, пектины; для неводных золей - каучуки.

При введении в коллоидный раствор электролитов, содержащих многовалентные ионы с зарядом противоположные заряду частиц, наблюдается явление «неправильные ряды». Оно состоит в том, что при добавлении к отдельным порциям золя все возрастающего его количества электролита золь сначала остается устойчивым, затем в определенном интервале концентраций происходит коагуляция; далее золь снова становится устойчивым и, наконец, при повышении концентрации электролита опять наступает коагуляция уже окончательная. Подобные явления могут вызывать и большие органические ионы. Объясняется это тем, что при весьма малых количествах введенного электролита ионов недостаточно, чтобы коагулировать золь, т. е. значение - потенциала остается выше привычного (рис. 3.1.2.4). При больших количествах электролита его ионы проявляют коагулирующее действие. Этот интервал концентраций отвечает значениям - потенциала частиц от критического первого знака до критического другого знака.

При еще больших концентрациях многовалентные ионы перезаряжают коллоидную частицу и золь опять устойчивый. В этой зоне -потенциал опять выше критического значения, но обратен по знаку частицам исходного золя. Наконец, при высоком содержании исходного электролита многовалентные ионы снова снижают значение -потенциала ниже критического и снова происходит окончательная коагуляция.

Повышение агрегативной устойчивости золя путём введения в него высокомолекулярного соединения (ВМС) называется коллоидной защитой. Происходит образование защитной пленки на поверхности золя (гидратной или ВМС), препятствующей взаимодействию частиц электролита.

В качестве количественной характеристики коагуляции Зигмонди предложил использовать скорость коагуляции.

Скорость коагуляции - это изменение концентрации коллоидных частиц в единицу времени при постоянном объеме системы.

Чтобы частицы при столкновении слиплись, а не разлетелись как упругие шары, должен быть преодолен потенциальный барьер коагуляции ?Uк. Следовательно, коагуляция произойдет только в том случае, когда коллоидные частицы будут обладать кинетической энергией, достаточной дл преодоления этого барьера. Для увеличения степени коагуляции необходимо снижать потенциальный барьер. Это может быть достигнуто добавлением к золю электролита - коагулянта.







Дата добавления: 2015-06-12; просмотров: 1338. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия