Студопедия — Ограничители перенапряжений
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ограничители перенапряжений






Ограничители перенапряжений предназначены для защиты электрооборудования подстанций и сетей переменного тока частотой 50 Гц от грозовых и кратковременных коммутационных перенапряжений. Ограничитель перенапряжений состоит из высоконелинейного резистора, состоящего из последовательно-параллельно включенных варисторов, выполненных на основе окиси цинка, заключенных в герметически закрытый фарфоровый корпус (рис. 1.8б). В последнее время для изготовления корпусов стали применять полимерные материалы (стеклопластик, кремнеорганическую резину и т.д.)

ОПН не имеют искрового промежутка, поэтому через него постоянно протекает ток. В нормальном рабочем режиме ток через ОПН носит емкостный характер и составляет десятые доли милиампера. При возникновении волн перенапряжения резисторы переходят в проводящее состояние. Вследствие высокой нелинейности варисторов через ограничители протекает значительный импульсный ток, в результате чего величина перенапряжения снижается до уровня, безопасного для изоляции защищаемого электрооборудования. Когда перенапряжение снижается, ограничитель возвращается в непроводящее состояние.

Оксидно-цинковая (металлооксидная) керамика − это нелинейный материал, получаемый в результате высокотемпературного обжига (1280−1300 °С) смеси состоящей из окиси цинка (ZnO) и некоторого количества оксида другого металла: висмута, сурьмы, кобальта, марганца и т.п. (масса самой весомой из добавок составляет менее 4 % массы оксида цинка).

На вновь строящихся подстанциях ограничители перенапряжений устанавливаются для защиты от грозовых и внутренних перенапряжений вместо вентильных разрядников [3].

Допустимое рассояние от ОПН до трансформаторов или другого оборудования определяется по формуле:

Lопн = Lрв =

где Lопн – расстояние от ОПН до защищаемого оборудования, м;

Lрв – расстояние от РВ до защищаемого оборудования, м;

Uисп- испытательное напряжение защищаемого оборудования при полном грозовом импульсе, кВ;

Uопн(рв) – остающееся напряжение на ОПН (РВ) при токе 5 кА.

Если L не превышает расчетного значения, то и остающееся напряжение не превысит допустимых напряжений на изоляции электрооборудования.

Рассмотрим основные характеристики ОПН:

1. Класс напряжения – ном. напряжение сети, в которое устанавливается ограничитель перенапряжений.

2. Номинальный разрядный ток – амплитудное значение импульса тока длительностью 8/20 мкс, используемое для классификации ограничителя.

3. Наибольшее длительное допустимое рабочее напряжение Uндр – наиболее важный параметр для ОПН. В ОПН нет ИП, поэтому через резисторы токи текут постоянно. Чтобы не произошло теплового разрушения ОПН, нужно правильно выбрать Uндр.

Для сети с эффективно заземленной нейтралью (Kz<1,4):

Uндр>

где Uм – максимальное напряжение.

Сети 3-35 кВ работают с изолированной или заземленной через реактор нейтралью. Однофазное замыкание в таких сетях немедленно не выключается и напряжение на здоровых фазах возрастает до линейного. Поэтому: Uндр >Uм.

4. Вольт-временная характеристика. Коммутационные и резонансные перенапряжения превышают Uндр. Устойчивость ОПН к кратковременным перенапряжениям можно определить по вольт-временной характеристике ограничителя.

5. Остающееся напряжение – напряжение на ОПН при прохождении через него разрядного тока. Оно зависит от величины, а также от формы волны разрядного тока. Оно должно быть согласовано с вольт-секундной характеристикой защищаемого оборудования.

6. Защитная характеристика ограничителя – комбинация остающихся напряжений на резисторе для импульсов разной формы. Достаточно описывается тремя видами импульсов тока:

1/20 мкс (грозовая волна с крутым фронтом),

8/20 мкс (грозовая волна),

30/60 мкс (коммутационные перенапряжения с крутым фронтом).

7. Коэффициент нелинейности а= log (U1/U2)/log(I1/I2)

8. Пропускная способность – суммарная энергия, воздействие которой НР способен выдержать без разрушения. Допустимый ток зависит от формы (амплитуды) и длительности импульса, а их эмпирическая зависимость описывается уравнением: I∙ = const, где m – постоянная (для ОПН 0,6-0,65).


 







Дата добавления: 2015-04-19; просмотров: 663. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия