Студопедия — Определение наибольших ошибок переноса
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение наибольших ошибок переноса






Числовые значения характеристик ПН изменяются в зависимости от количества наблюдаемых машин N и условий их эксплуатации. Оценивают эти изменения доверительными границами или доверительным интервалом.

При расчетах характеристик ПН и переносе их на другие группы машин той же марки необходимо оценивать наибольшую возможную ошибку такого переноса. Абсолютная ошибка переноса опытных характеристик ПН при заданной доверительной вероятности будет равна величин e α.

Для удобства расчета относительную предельную ошибку δ определяют в процентах от среднего значения ПН , независимо от выбранного закона распределения:

 

(32)

 

Например, при расчете среднего доремонтного ресурса двигателя для N =69 и α=0,90 относительную ошибку переноса может достигать предельной величины:

%.


ПРИЛОЖЕНИЕ

 

Таблица 1. Варианты контрольного задания

 

НАРОБОТКА НА ОТКАЗ, МОТО-ЧАС
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
  с                          
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             

Таблица 1. Интегральная функция закона нормального распределения

 

0,50 0,51 0,52 0,53 0,54 0,55 0,56 0,57 0,58 0,59 0,60 0,61 0,62 0,63 0,64 0,65 0,66 0,67 0,000 0,025 0,051 0,075 0,100 0,125 0,150 0,176 0,202 0,228 0,254 0,279 0,306 0,332 0,358 0,385 0,412 0,440 0,68 0,69 0,70 0,71 0,72 0,73 0,74 0,75 0,76 0,77 0,78 0,79 0,80 0,81 0,82 0,83 0,84 0,85 0,468 0,469 0,524 0,553 0,583 0,613 0,643 0,674 0,706 0,739 0,772 0,806 0,842 0,878 0,915 0,954 0,995 1,036 0,86 0,87 0,88 0,89 0,90 0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,98 0,99 0,999 0,9999 0,99999 1,080 1,126 1,175 1,227 1,281 1,341 1,405 1,476 1,555 1,645 1,751 1,881 2,054 2,326 3,090 3,720 4,265

 

Таблица 2. Коэффициенты Ирвина

 

Повторность информации N при α=0,95 при α =0,99 Повторность информации N при α =0,95 при α =0,99
  2,8 2,2 1,5 1,3 3,7 2,9 2,0 1,8   1,2 1,1 1,0 0,9 1,7 1,6 1,5 1,3

 

 

 


Таблица 3. Дифференциальная функция (функция плотности вероятности) закона нормального распределения (ЗНР)

 

Сотые доли
                   
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,8 3,0 0,40 0,40 0,39 0,38 0,37 0,35 0,33 0,31 0,29 0,27 0,24 0,22 0,19 0,17 0,15 0,13 0,11 0,09 0,08 0,07 0,05 0,04 0,04 0,03 0,02 0,02 0,01 0,01 0,00 0,40 0,40 0,39 0,38 0,37 0,35 0,33 0,31 0,29 0,26 0,24 0,22 0,19 0,17 0,15 0,13 0,11 0,09 0,08 0,06 0,05 0,04 0,04 0,03 0,02 0,02 0,01 0,01 0,00 0,40 0,40 0,39 0,38 0,37 0,35 0,33 0,31 0,29 0,26 0,24 0,21 0,19 0,17 0,15 0,13 0,11 0,09 0,08 0,06 0,05 0,04 0,03 0,03 0,02 0,02 0,01 0,01 0,00 0,40 0,40 0,39 0,38 0,37 0,35 0,33 0,31 0,29 0,26 0,24 0,21 0,19 0,17 0,15 0,13 0,11 0,09 0,08 0,06 0,05 0,04 0,03 0,03 0,02 0,02 0,01 0,01 0,00 0,40 0,40 0,39 0,38 0,36 0,35 0,33 0,30 0,28 0,26 0,23 0,21 0,19 0,16 0,14 0,12 0,10 0,09 0,08 0,06 0,05 0,04 0,03 0,03 0,02 0,02 0,01 0,01 0,00 0,40 0,40 0,39 0,38 0,36 0,34 0,32 0,30 0,28 0,25 0,23 0,21 0,18 0,16 0,14 0,12 0,10 0,09 0,07 0,06 0,05 0,04 0,03 0,03 0,02 0,02 0,01 0,01 0,00 0,40 0,39 0,39 0,37 0,36 0,34 0,32 0,30 0,28 0,25 0,23 0,20 0,18 0,16 0,14 0,12 0,10 0,09 0,07 0,06 0,05 0,04 0,03 0,03 0,02 0,02 0,01 0,01 0,00 0,40 0,39 0,39 0,37 0,36 0,34 0,32 0,30 0,27 0,25 0,23 0,20 0,18 0,16 0,14 0,12 0,10 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,02 0,02 0,01 0,01 0,00 0,40 0,39 0,38 0,37 0,36 0,34 0,32 0,29 0,27 0,25 0,22 0,20 0,18 0,15 0,13 0,12 0,10 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,02 0,01 0,01 0,01 0,00 0,40 0,39 0,38 0,37 0,35 0,34 0,31 0,29 0,27 0,24 0,22 0,20 0,17 0,15 0,13 0,11 0,10 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,02 0,01 0,01 0,01 0,00

 

 

Таблица 4. Параметры и коэффициенты закона распределения Вейбулла (ЗРВ)

 

b V
           
0,800 0,820 0,840 0,860 0,880 0,900 0,920 0,940 0,960 0,980 0,000 1,040 1,080 1,120 1,160 1,200 1,240 1,280 1,320 1,360 1,400 1,420 1,440 1,460 1,480 1,500 1,520 1,540 1,560 1,580 1,600 1,620 1,640 1,660 1,680 1,700 1,720 1,740 1,760 1,780 1,800 1,820 1,840 1,860 1,880 1,900 1,920 1,940 1,960 1,980 2,000 2,020 2,040 2,060 2,080 2,100 2,120 2,140 2,160 2,180 2,200 2,220 2,240 2,260 2,280 2,300 2,320 2,340 2,360 2,380 2,400 2,420 2,440 2,460 2,480 2,500 2,520 2,540 2,560 2,580 2,600 2,620 2,640 2,680 2,700 2,720 2,740 2,760 2,780 2,800 2,820 2,840 2,860 2,880 2,900 2,920 2,940 2,960 2,980 3,000 3,020 3,040 3,060 3,080 3,100 3,120 3,140 3,160 3,180 3,200 3,220 3,240 3,260 3,280 3,300 3,320 3,340 3,360 3,380 3,400 3,420 3,440 3,460 3,480 3,500 3,520 3,540 3,560 3,580 3,600 3,620 3,640 3,660 3,680 3,700 3,720 3,740 3,760 3,780 3,800 3,820 3,840 3,860 3,880 3,900 3,920 3,940 3,960 3,980 4,000 4,020 4,040 4,060 4,080 4,100 4,120 4,140 4,160 4,180 4,200 1,133 1,114 1,096 1,080 1,066 1,052 1,040 1,029 1,018 1,009 1,000 0,984 0,971 0,959 0,949 0,941 0,933 0,926 0,921 0,916 0,911 0,909 0,908 0,906 0,904 0,903 0,901 0,900 0,899 0,898 0,897 0,896 0,895 0,894 0,893 0,892 0,892 0,891 0,890 0,890 0,889 0,889 0,888 0,888 0,888 0,887 0,887 0,887 0,887 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,886 0,887 0,887 0,887 0,887 0,887 0,887 0,888 0,888 0,888 0,888 0,888 0,889 0,889 0,889 0,889 0,890 0,890 0,890 0,890 0,891 0,891 0,891 0,891 0,892 0,892 0,892 0,892 0,893 0,893 0,893 0,893 0,894 0,894 0,894 0,895 0,895 0,895 0,895 0,896 0,896 0,896 0,896 0,897 0,897 0,897 0,898 0,898 0,898 0,898 0,899 0,899 0,899 0,899 0,900 0,900 0,900 0,901 0,901 0,901 0,901 0,902 0,902 0,902 0,902 0,903 0,903 0,903 0,903 0,904 0,904 0,904 0,905 0,905 0,905 0,905 0,906 0,906 0,906 0,906 0,907 0,907 0,907 0,907 0,908 0,908 0,908 0,908 0,909 0,909 1,428 1,367 1,311 1.261 1,214 1,171 1,132 1,095 1,061 1,029 1,000 0,947 0,900 0,858 0,821 0,787 0,757 0,729 0,704 0,681 0,660 0,650 0,640 0,631 0,622 0,613 0,605 0,579 0,589 0,581 0,574 0,567 0,560 0,553 0,546 0,540 0,534 0,528 0,522 0,517 0,511 0,506 0,501 0,496 0,491 0,486 0,481 0,476 0,472 0,468 0,463 0,459 0,455 0,451 0,447 0,443 0,439 0,436 0,432 0,428 0,425 0,421 0,418 0,415 0,412 0,408 0,405 0,402 0,399 0,396 0,393 0,391 0,388 0,385 0,382 0,380 0,377 0,374 0,372 0,369 0,367 0,364 0,362 0,357 0,355 0,353 0,351 0,348 0,346 0,344 0,342 0,340 0,338 0,336 0,334 0,332 0,330 0,328 0,326 0,325 0,323 0,321 0,319 0,317 0,316 0,314 0,312 0,310 0,309 0,307 0,306 0,304 0,302 0,301 0,299 0,298 0,296 0,295 0,293 0,292 0,290 0,289 0,287 0,286 0,285 0,283 0,282 0,281 0,279 0,278 0,277 0,275 0,274 0,273 0,272 0,270 0,269 0,268 0,267 0,266 0,264 0,263 0,262 0,261 0,260 0,259 0,258 0,256 0,255 0,254 0,253 0,252 0,251 0,250 0,246 0,248 0,247 0,246 0,245 0,244 1,261 1,227 1,196 1,167 1,139 1,113 1,088 1,064 1,042 1,020 1,000 0,962 0,927 0,894 0,865 0,837 0,811 0,787 0,765 0,744 0,724 0,714 0,705 0,696 0,687 0,679 0,671 0,663 0,655 0,647 0,640 0,633 0,626 0,619 0,612 0,605 0,599 0,593 0,587 0,581 0,575 0,569 0,564 0,558 0,553 0,547 0,542 0,537 0,532 0,527 0,523 0,518 0,513 0,509 0,505 0,500 0,496 0,492 0,488 0,484 0,480 0,476 0,472 0,468 0,465 0,461 0,457 0,454 0,451 0,447 0,444 0,441 0,437 0,434 0,431 0,428 0,425 0,422 0,419 0,416 0,413 0,410 0,407 0,402 0,399 0,397 0,394 0,392 0,389 0,387 0,384 0,382 0,379 0,377 0,375 0,372 0,370 0,368 0,366 0,363 0,361 0,359 0,357 0,355 0,353 0,351 0,349 0,347 0,345 0,343 0,341 0,339 0,337 0,335 0,334 0,332 0,330 0,328 0,326 0,325 0,323 0,321 0,320 0,318 0,316 0,315 0,313 0,312 0,310 0,308 0,307 0,305 0,304 0,302 0,301 0,299 0,298 0,297 0,295 0,294 0,292 0,291 0,290 0,288 0,287 0,286 0,284 0,283 0,282 0,280 0,279 0,278 0,277 0,276 0,274 0,273 0,272 0,271 0,270 0,268 2,815 2,707 2,608 2,514 2,427 2,345 2,268 2,195 2,127 2,062 2,000 1,886 1,782 1,688 1,601 1,521 1,447 1,378 1,314 1,255 1,198 1,172 1,146 1,120 1,096 1,072 1,049 1,026 1,004 0,983 0,962 0,942 0,922 0,902 0,883 0,865 0,847 0,829 0,812 0,795 0,779 0,763 0,747 0,731 0,716 0,701 0,687 0,672 0,658 0,645 0,631 0,618 0,605 0,592 0,579 0,567 0,555 0,543 0,531 0,520 0,509 0,498 0,487 0,476 0,465 0,455 0,444 0,434 0,424 0,415 0,405 0,395 0,386 0,377 0,368 0,359 0,350 0,341 0,332 0,324 0,315 0,307 0,299 0,283 0,275 0,267 0,260 0,252 0,245 0,237 0,230 0,223 0,216 0,209 0,202 0,195 0,188 0,181 0,175 0,168 0,162 0,155 0,149 0,143 0,136 0,130 0,124 0,118 0,112 0,106 0,101 0,095 0,089 0,983 0,078 0,072 0,067 0,061 0,056 0,051 0,046 0,040 0,035 0,030 0,025 0,020 0,015 0,010 0,005 0,001 –0,004 –0,009 –0,014 –0,018 –0,023 –0,027 –0,032 –0,036 –0,041 –0,045 –0,050 –0,054 –0,058 –0,062 –0,067 –0,071 –0,075 –0,079 –0,083 –0,087 –0,091 –0,095 –0,099 –0,103 –0,107 –0,111 –0,115 –0,118 –0,122 0,126 0,669 0,661 0,658 0,655 0,652 0,649 0,645 0,641 0,638 0,635 0,632 0,626 0,620 0,615 0,610 0,605 0,600 0,596 0,592 0,588 0,584 0,582 0,580 0,578 0,577 0,576 0,574 0,572 0,570 0,569 0,568 0,566 0,564 0,563 0,562 0,561 0,559 0,558 0,557 0,556 0,555 0,553 0,552 0,551 0,550 0,549 0,548 0,547 0,546 0,545 0,544 0,543 0,542 0,541 0,540 0,539 0,538 0,537 0,536 0,535 0,535 0,534 0,533 0,533 0,532 0,531 0,531 0,530 0,529 0,528 0,527 0,527 0,526 0,526 0,525 0,524 0,524 0,523 0,522 0,521 0,520 0,520 0,519 0,518 0,517 0,517 0,516 0,516 0,515 0,514 0,514 0,513 0,513 0,512 0,512 0,511 0,511 0,510 0,510 0,509 0,509 0,508 0,508 0,507 0,507 0,507 0,506 0,506 0,505 0,505 0,505 0,504 0,504 0,503 0,503 0,503 0,502 0,502 0,501 0,501 0,501 0,500 0,500 0,499 0,499 0,499 0,498 0,498 0,497 0,497 0,497 0,496 0,496 0,495 0,495 0,495 0,495 0,494 0,494 0,494 0,494 0,494 0,493 0,493 0,493 0,492 0,492 0,492 0,491 0,491 0,491 0,490 0,490 0,489 0,489 0,489 0,488 0,488 0,487 0,487

 

Таблица 5. Дифференциальная функция (функция плотности вероятности) законараспределения Вейбулла (ЗРВ)

Параметр b
1,0 1,2 1,4 1,6 1,8 2,0 3,0
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4 2,5 0,91 0,82 0,74 0,67 0,61 0,55 0,50 0,45 0,41 0,37 0,33 0,30 0,27 0,25 0,22 0,20 0,18 0,17 0,15 0,14 0,12 0,11 0,10 0,09 0,08 0,71 0,75 0,75 0,72 0,68 0,63 0,58 0,53 0,49 0,44 0,40 0,36 0,32 0,29 0,26 0,23 0,20 0,18 0,16 0,14 0,12 0,11 0,09 0,08 0,07 0,54 0,66 0,72 0,74 0,73 0,70 0,55 0,62 0,57 0,52 0,46 0,41 0,37 0,32 0,28 0,25 0,21 0,18 0,16 0,13 0,11 0,09 0,08 0,07 0,06 0,39 0,57 0,67 0,73 0,76 0,76 0,73 0,70 0,65 0,59 0,53 0,47 0,41 0,35 0,30 0,25 0,21 0,18 0,14 0,12 0,09 0,08 0,06 0,05 0,04 0,28 0,47 0,61 0,71 0,78 0,80 0,80 0,77 0,72 0,66 0,59 0,52 0,45 0,38 0,31 0,26 0,21 0,16 0,13 0,10 0,07 0,05 0,04 0,03 0,02 0,20 0,38 0,55 0,68 0,78 0,84 0,86 0,84 0,80 0,74 0,66 0,57 0,48 0,39 0,32 0,25 0,19 0,14 0,10 0,07 0,05 0,04 0,02 0,02 0,01 0,03 0,12 0,26 0,45 0,66 0,87 1,04 1,15 1,17 1,10 0,96 0,77 0,56 0,38 0,23 0,13 0,06 0,03 0,01 0,00 0,00 – – – –

 

Таблица 6. Вероятность совпадения % по критерию согласия

 

               
1 2 3 4 5 6 7 8 9 10 0,00 0,10 0,35 0,71 1,14 1,64 2,17 2,73 3,32 3,94 0,02 0,21 0,58 1,06 1,61 2,20 2,83 3,49 4,17 4,86 0,06 0,45 1,00 1,65 2,34 3,07 3,82 4,59 5,38 6,18 0,15 0,71 1,42 2,20 3,00 3,83 4,67 5,53 6,39 7,27 0,45 1,39 2,37 3,36 4,35 5,35 6,34 7,34 8,34 9,34 1,07 2,41 3,66 4,88 6,06 7,23 8,38 9,52 10,7 11,8 1,64 3,22 4,64 5,99 7,29 8,56 9,80 11,0 12,2 13,4 2,71 4,60 6,25 7,78 9,24 10,6 12,0 13,4 14,7 16,0

 

Таблица 7. Коэффициенты и для двусторонних доверительных границ

 

N α=0,60 α =0,80 α =0,90 α =0,95
  1,06 0,98 0,94 0,92 0,91 0,90 0,89 0,88 0,88 0,88 0,87 0,87 0,87 0,86 0,86 0,85 0,85 0,85 0,85 0,85 0,85 1,95 1,74 1,62 1,54 1,48 1,43 1,40 1,37 1,34 1,33 1,31 1,29 1,28 1,24 1,21 1,18 1,16 1,14 1,12 1,10 1,09 0,70 0,73 0,75 0,76 0,77 0,78 0,79 0,80 0,80 0,81 0,81 0,83 0,83 0,85 0,86 0,87 0,88 0,89 0,90 0,91 0,92 1,89 1,64 1,53 1,48 1,44 1,42 1,40 1,38 1,37 1,36 1,36 1,35 1,35 1,33 1,32 1,31 1,30 1,30 1,30 1,29 1,29 2,73 2,29 2,05 1,90 1,80 1,72 1,66 1,61 1,57 1,53 1,50 1,48 1,46 1,37 1,33 1,29 1,24 1,21 1,19 1,16 1,14 0,57 0,60 0,62 0,65 0,67 0,68 0,69 0,70 0,70 0,71 0,73 0,74 0,74 0,77 0,79 0,70 0,73 0,84 0,86 0,87 0,88 2,92 2,35 2,13 2,02 1,94 1,90 1,86 1,83 1,81 1,80 1,78 1,77 1,76 1,73 1,71 1,70 1,68 1,68 1,67 1,66 1,66 3,66 2,93 2,54 2,29 2,13 2,01 1,91 1,83 1,78 1,73 1,69 1,65 1,62 1,51 1,44 1,39 1,32 1,28 1,25 1,21 1,19 0,48 0,52 0,55 0,57 0,59 0,61 0,63 0,64 0,64 0,65 0,66 0,67 0,68 0,72 0,74 0,76 0,78 0,80 0,82 0,84 0,86 4,30 3,18 3,78 2,57 2,45 2,37 2,31 2,26 2,23 2,20 2,18 2,16 2,15 2,09 2,06 2,04 2,02 2,01 2,00 1,99 1,98 4,85 3,67 3,07 2,72 2,48 2,32 2,18 2,09 2,00 1,94 1,88 1,83 1,79 1,64 1,55 1,48 1,40 1,35 1,31 1,27 1,23 0,42 0,46 0,49 0,51 0,54 0,56 0,57 0,59 0,60 0,61 0,62 0,63 0,64 0,67 0,70 0,72 0,75 0,77 0,79 0,81 0,83

 


Таблица 9. Интегральная функция (функция распределения) закона распределения Вейбулла (ЗРВ)

Параметр b
0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 0,12 0,21 0,29 0,35 0,41 0,47 0,52 0,56 0,60 0,63 0,66 0,69 0,72 0,74 0,76 0,78 0,80 0,82 0,83 0,85 0,86 0,87 0,88 0,89 0,90 0,91 0,91 0,92 0,10 0,18 0,26 0,33 0,39 0,45 0,50 0,55 0,59 0,63 0,67 0,70 0,73 0,75 0,78 0,80 0,82 0,84 0,85 0,87 0,88 0,89 0,90 0,91 0,92 0,93 0,93 0,94 0,08 0,16 0,23 0,31 0,37 0,43 0,49 0,54 0,59 0,63 0,67 0,71 0,74 0,77 0,79 0,81 0,83 0,85 0,87 0,88 0,90 0,91 0,92 0,93 0,94 0,94 0,95 0,96 0,06 0,12 0,19 0,26 0,33 0,40 0,47 0,53 0,58 0,63 0,67 0,71 0,75 0,78 0,80 0,83 0,85 0,87 0,89 0,90 0,91 0,92 0,93 0,94 0,95 0,96 0,96 0,97 0,05 0,12 0,19 0,26 0,33 0,40 0,47 0,53 0,58 0,63 0,68 0,72 0,76 0,79 0,82 0,84 0,86 0,88 0,90 0,92 0,93 0,94 0,95 0,96 0,96 0,97 0,97 0,98 0,04 0,10 0,17 0,24 0,32 0,39 0,46 0,52 0,58 0,63 0,68 0,73 0,76 0,80 0,83 0,86 0,88 0,90 0,91 0,93 0,94 0,95 0,96 0,97 0,97 0,98 0,98 0,99 0,03 0,





Дата добавления: 2015-12-04; просмотров: 162. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия