Студопедия — Основные определения.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные определения.






Как показывает практика, возможностей логики высказываний явно недостаточно для представления знаний. Напомним основные понятия более сложной логики предикатов первого порядка (ЛППП).

Предикат – это логическая функция одного или нескольких переменных. Результатом этой функции является 1 – истина или 0 – ложь.

Примеры. СТУДЕНТ (Вася), ПРОЖИВАНИЕ (x, Томск).

Терм – это константа, переменная или некоторая n-местная функция (функтор f(x1,…,xn))

Примеры. а, x, f(x, y).

Если P – n-местный предикат и t1…tn – термы, то P(t1,…,tn) – атом.

Примеры. P(x), P(x,y), P(a, x), P(x, y, f(x, y)).

В формулах используются логические связки (операции):ù, Ù, Ú, ®, «и кванторы:", $.

Рекуррентное определение формулы:

A) Атом – есть формула

B) Если F – формула, то ùF – формула.

C) Если F, G – формулы, то FÚG, FÙG, F®G, F«G – формулы.

D) Если F – формула, в которой есть переменная x, то "x F(x), $x F(x) – формулы (при этом переменная x называется связанной квантором всеобщности или существования).

E) Все переменные в формуле связаны кванторами.

Пример. Формализуем утверждение: «для любого натурального числа существует единственное натуральное число, непосредственно следующее за ним».

Введем предикаты E(x, y) – x=y, N(x) – x – натуральное число и функтор f(x) – следующее число (x+1).

"x [N(x)®$y [E(f(x), y)Ù"z [E(f(x), z)®E(y, z)]]].

Интерпретация формул производится следующим образом:

А) Считаем, что для каждой формулы определено множество объектов, о которых может идти речь, это множество называется областью определения формулы (обозначается D).

B) Каждой константе ставим в соответствие один элемент из D.

C) Определяем значения функций для всех возможных наборов аргументов.

D) Определяем истинностное значение каждого предиката.

E) Устанавливаем истинностное значение формулы по таблицам истинности (это можно сделать только в случае, если все переменные в формуле связаны кванторами – иначе, формула бессмысленна)

Пример.

//пример на интерпретацию (1)

"x [P(x)→Q(x,f(x))]

A) D = {1, 2} – область определения

B) Константы отсутствуют

С) f (1) = 2 f (2) = 1

D) P (1) = 1 P (2) = 0

Q (1, 1) = 1 Q (1, 2) = 0 Q (2, 1) = 0 Q (2, 2) = 1

E) Вычисляем значение матрицы

x = 1

P (x) → Q (x, f (x)) = P (1) → Q (1, f(1)) = P(1) → Q (1, 2) =1 → 0 = 0

Таким образом:

"x [P(x) → Q (x, f(x))] = 0 в данной интерпретации.

В этой же интерпретации формула

$x [P(x) → Q (x, f(x))] = 1,

т.к.

при x = 2

P(x) → Q (x, f(x) = P(2) → Q (2, f (2)) = 0 → 0 = 1

 

 

Определения общезначимости, противоречивости и логического следствия точно соответствуют аналогичным понятиям в логике высказываний. Имеют место те же теоремы дедукции. Справедливыми остаются и эквивалентные преобразования.

Для того чтобы формулы привести к виду, с которым удобно работать производят их стандартизацию.

А) Избавляются от операций ®, «с помощью соответствующих правил (см. 2.1.1).

B) Добиваются, чтобы ù стояло только перед атомом (используем законы Де Моргана см. 2.1.1)

С) Переносят кванторы в начало формулы, чтобы она имела вид:

//формула (2)

1 x1 2 x2 ….. n x n M [x1, …, xn]

В этом случае говорят, что формула представлена в ПНФ (предваренной норм форме). M[x1,…,xn] называется матрицей формулы.

Используются следующие эквивалентные преобразования:

//формулы (3)

x F(x) G = x [F(x) G]

в случае, если G не содержит переменную x:

1 x F (x) 2x G(x) = 1 x 2 y [F1(x) G2(y)],

т.е. в случае необходимости производим замену переменных.

В двух частных случаях можно избежать переименования переменной:

//формулы (4)

"x F (x) Ù "x G(x) = "x [F(x) Ù G(x)]

$ x F(x) Ú $ x G (x) = $ x [F(x) Ú G(x)]

D) Добиваются, чтобы матрица была представлена в КНФ.

E) Избавляются от $ путем замены связанных им переменных на константы.

//формула (5)

F = x1 xi-1 $ xi xi+1 xn M [x1 …, xi-1, xi ; xi+1; xn]

G = x1 xi-1 xi+1 xn M [x1, …, xi-1, a, xi+1, … xn],

где:

а – некоторая константа.

Таким образом, заменяем переменные под $ на константы.

Это преобразование не является эквивалентным, однако оно сохраняет противоречивость, т.е. F- противоречива, тогда и только тогда, когда противоречива G. Этого достаточно, если мы пользуемся 2-й теоремой дедукции.

 







Дата добавления: 2015-10-19; просмотров: 471. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия