Студопедия — Теоремы отделимости
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоремы отделимости






Гиперплоскостью в Еn называют множество вида: p = {x: < c, x> ³ < c, v> }, где с¹ 0. В пространстве Еn гиперплоскость определяют два полупространства (подмножества):

Еn + (p)= {x: < c, x> £ < c, v> } и(3. 11)

Еn - (p)= {x: < c, x> ³ < c, v> } (3.12)

Будем исследовать возможности построения такой гиперплоскости p, чтобы заданное множество целиком содержалось в Еn - (p), а также случаи, когда возможно построение гиперплоскости, разделяющей два заданных множества.

Теорема отделимости 3.7. Для любого выпуклого и замкнутого множества Х и любой точки v, не принадлежащей множеству Х, существует такая гиперплоскость

p = {x: < c, x> ³ < c, v> }, что ХÌ Еn - (p). (3.13)

Доказательство.

Пусть р – проекция точки v на множестве Х. Положим с = v - p, т. е.

p={x/< v-p, x> =< v-p, v> } (3.14)

и докажем, что для любой точки xÎ Х

< v - p, x> < < v - p, v> (3.15)

Пусть xÎ Х. Рассмотрим разность

< v - p, x> - < v - p, v> = < v - p, x-v> = < v - p, (x-p)+(p-v)> = (3.16)

= < v - p, x-p> - || v – p||2.

По теореме 3.6. первое слагаемое отрицательное, так как , то второе слагаемое строго отрицательно.

Следовательно разность < v - p, x> - < v - p, v> < 0, откуда следует

< v - p, x> < < v - p, v>;.

Замечание. Нетрудно видеть, что ни одна из точек xÎ Х не принадлежит p, т.е. для всех xÎ Х < v - p, x> < < v - p, v>. Более того

< v - p, x> £ < v - p, v> -|| v – p||2, где || v – p||2> 0.

Для множеств, не являющихся выпуклыми, теорема 3.7, вообще говоря, не верна. Так, для множества X и точки v рисунка 3.6 отделяющую гиперплоскость p построить нельзя.

. v

X

 

 

Рис.3.6.

Определение 3.4. Опорной гиперплоскостью в граничной точке n множества Х называется гиперплоскость p ={x / < c, x> ³ < c, p> }, для которой ХÌ Еn - (p).

Теорема 3.8. В любой граничной точке р выпуклого множества Х существует опорная гиперплоскость.

Доказательство. Так как р граничная точка для Х, то в Еn\ можно выделить последовательность {vk}, для которой vk р при k ¥. По теореме 3.7 для каждой точки vk можно построить отделяющую гиперплоскость pk={x/< ck, xk> = < ck, vk > }, где сk=(vk - pk)/|| vk – pk||. Так как || сk|| =1, то из последовательности k } выделим сходящуюся к некоторому с последовательность {cki}. В силу предыдущего замечания для всякого xÎ Х можно записать неравенство

< cki , x> < < cki, vki >.

Переходя к пределу при i ¥, получаем

< c, x> £ < c, р >. Таким образом, ХÌ Еn - (p). для p = {x: < c, x> = < c, р> }, что и требовалось доказать.

На рисунке 3.7 приведены примеры опорных гиперплоскостей. Заметим, что гиперплоскость p1 является одновременно и касательной, чего нельзя сказать о p2 и p3.

 

p3.

p1 p2

р 2

р1

X

Рис. 3.7.

 

Теорема 3.9 (о разделяющей гиперплоскости).

Если множество Х0 внутренних точек выпуклого множества Х не пусто и не пересекается с выпуклым множеством Y (Х0Ç Y=Æ), то для множеств Х и Y существует разделяющая гиперплоскость p, т. е. существует вектор с¹ 0, такой, что < c, у> £ < c, х> для всех у Î Y и х Î Х.

Доказательство. Множество Z = {Z/Z= y-x, xÎ Х0, yÎ Y} выпукло и Z=0n. Из теорем 3.7 и 3.8 следует существование с¹ 0n, такого, что

< c, z > £ < c, y-x> £ < c, 0> = 0 (3.17)

для всех xÎ Х0, yÎ Y. Это неравенство также справедливо для всех xÎ Х, так как xÎ X \ Х0 являются предельными точками Х0, а предельный переход не нарушает нестрогих неравенств. Отсюда

< c, y > £ < c, x>, xÎ Х, yÎ Y (3.18)

Зафиксируем некоторое y0Î Y. Тогда из предыдущего неравенства следует ограниченность снизу < c, x> на множестве Х. Отсюда нетрудно показать существование точки такой, что

< c, y > = min < c, x> для (3.19)

Положим

p = {x/ < c, x> = < c, р> }, тогда ХÌ Еn + (p).

Так как рÎ , то для всех yÎ Y справедливо неравенство

< c, y > £ < c, р>, т. е. YÎ Еn - (p).

Теорема доказана полностью.

 

 







Дата добавления: 2014-12-06; просмотров: 2037. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия