Студопедия — Поток напряженности электрического поля. Теорема Гаусса в интегральной форме
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поток напряженности электрического поля. Теорема Гаусса в интегральной форме






Пусть n – единичная нормаль к площадке dS (достаточно малой, чтобы пренебречь изменением электрической напряженности Е в пределах площадки). Поток dФ э электрической напряженности через эту площадку определяется как произведение нормальной компоненты Е и dS:

. (1.3.1)

Знак потока dF э, очевидно, зависит от взаимной ориентации нормали и напряженности. Если эти два вектора образуют острый угол, поток положителен, если тупой – отрицателен.

Поток dF эчерез площадку, наклонную к силовой линии (т.е. к вектору Е),равен также потоку через проекцию этой площадки на плоскость, перпендикулярную силовой линии (см. рис. 1.3.2):

. (1.3.2)

Это равенство (1.3.1) следует из определения (1.3.1) для dF эи теоремы об углах с взаимно перпендикулярными сторонами.

Поток F э электрической напряженности Е через замкнутую поверхность S (рис. 1.3.3) определяется как сумма элементарных потоков через все площадки поверхности. В пределе, когда количество площадок N стремится к бесконечности, сумма потоков через площадки переходит в поверхностный интеграл от нормальной компоненты напряженности E n:

. (1.3.3.)

К. Гауссом в 1844 доказана теорема (теорема Гаусса в интегральной форме), устанавливающая связь источников поля и потока напряженности через произвольную поверхность, окружающую источники.

Для доказательства выведем вспомогательную формулу. Поток от точечного заряда через произвольную окружающую его сферу.

. (1.3.4)

Силовые линии поля точечного заряда перпендикулярны поверхности концентрической сферы (см. рис 1.3.4). С учетом этого факта формула (1.3.4) выводится из выражения для поля точечного заряда (1.2.3). Как видно, в этом случае поток F эне зависит от радиуса сферы, а зависит только от Q.

Из (1.3.2) и (1.3.4) следует, что поток поля точечного заряда через любую поверхность, окружающую заряд, равен потоку через сферу произвольного радиуса, концентричную заряду. Действительно, поток поля точечного заряда через любую площадку dS, вырезанную телесным углом d W из произвольной поверхности, получается таким же, как поток через площадку сферы, вырезанную тем же телесным углом. Поток поля F эчерез сферу, как уже отмечалось, не зависит от ее радиуса. Поэтому поток напряженности поля точечного заряда через поверхность S (см. рис. 1.3.5) задается формулой (1.3.4). Из формулы (1.3.4) и принципа суперпозиции следует теорема Гаусса в интегральной форме: полный поток F э напряженности электрического поля через произвольную замкнутую поверхность, внутри которой находится как угодно распределенный (объемный, поверхностный и т.д.) заряд Q, вычисляется по формуле

. (1.3.5)

При применении теоремы Гаусса для решения задач, необходимо помнить, что в уравнении (1.3.5) Q – сумма всех зарядов внутри мысленной поверхности, через которую вычисляется поток, в том числе зарядов, принадлежащим атомам и молекулам среды (так называемых связанных зарядов, см. ниже Лекция 2).

Поток напряженности поля Е через любую замкнутую поверхность,внутри которой полный заряд равен нулю, также равен нулю.







Дата добавления: 2015-09-04; просмотров: 478. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия