Студопедия — РЕШЕНИЕ РАЗНОСТНЫХ УРАВНЕНИЙ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

РЕШЕНИЕ РАЗНОСТНЫХ УРАВНЕНИЙ






 

Всякое соотношение, связывающее решетчатую функцию и её разности до некоторого порядка к

(12.1)

называется разностным уравнением.

Используя формулу, выражающую разности различных порядков через значения решетчатой функции

можно соотношение (12.1)преобразовать к виду

(12.2)

Если (12.2) содержит в явном виде функции и , то исходное разностное уравнение (12.1) называют уравнением порядка к.

При переходе от разностей решетчатых функций к самим решетчатым функциям могут взаимно уничтожаться как функции , так и функции . И в результате порядок разностного уравнения может отличаться от порядка старшей разности.

Например.

Дано уравнение

.

Используя выражение для разностей, имеем

Подставляем в уравнение, после приведения подобных членов получим.

.

Введем новую переменную m=n +1. Получим

.

Т.о. исходное уравнение является уравнением второго порядка, несмотря на то, что оно содержит разность третьего порядка.

Решетчатая функция , которая обращает уравнение в тождество, называется решением разностного уравнения.

Мы ограничимся рассмотрением лишь линейных разностных уравнений к – го порядка с постоянными коэффициентами

(12.3)

Если , то уравнение называется однородным.

Пусть заданы значения - начальные значения. Применяя к обеим частям уравнения (12.3) дискретное преобразование Лапласа и пользуясь свойством 2 – смещение в области оригиналов (теорема опережения), получим уравнение относительно - изображения искомой функции . Решаем это алгебраическое уравнение относительно . Далее, пользуясь таблицами или формулами обратного преобразования, получим .

Если начальные значения не заданы, то, считая их произвольными постоянными получим общее решение уравнения (12.3).

Если исходное линейное разностное уравнение записано в виде

(12.4)

то метод его решения остается тем же. Но для перехода от оригинала к изображению в левой части уравнения следует воспользоваться свойством 4 – изображением конечных разностей. При этом должны быть заданы начальные значения

Если эти значения не заданы, то, считая их произвольными постоянными, получим общее решение.

Указанный метод применяется и при решении систем разностных уравнений.

Пример 1.

Найти решение уравнения

при начальных условиях

.

Решение:

Пусть

Подставляем в уравнение

.

Откуда находим .

.

Удобно произвести замену .

тогда оригинал:

В таблице 3 приведены наиболее часто встречающиеся в примерах соответствия при D-преобразовании и Z - преобразовании.

Пример 2.

Найти решение уравнения при начальных условиях , .

Решение. Здесь уравнение дано в форме разности. Применяем Z – преобразование к обеим частям уравнения:

Откуда,

 

 

Таблица 3

1.  
2.
3.
4.
5.
6. Линейность
7. Опережение  
8. Запаздывание    
9. Дифференцирование изображения            

 

 

Решая это уравнение относительно , получим:

.

Возвращаемся к оригиналу:

Пример 3. Найти решение уравнения x(n+2)+4x(n+1)+3x(n)=1, при начальных условиях x(0)=1, x(1)=1.

Решение.

Применяем Z – преобразование к обеим частям уравнения:

откуда получаем:

Возвращаясь к оригиналу, получим:








Дата добавления: 2015-09-18; просмотров: 582. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия