Студопедия — РЕШЕНИЕ ДИФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ И ЗАДАЧ МАТЕМАТИЧЕСКОЙ ФИЗИКИ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

РЕШЕНИЕ ДИФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ И ЗАДАЧ МАТЕМАТИЧЕСКОЙ ФИЗИКИ






Методы операционного исчисления, основанные на идее использования преобразования Лапласа являются наиболее эффективным при решении основных задач для дифференциальных уравнений в частных производных.

Неизвестная функция , удовлетворяющая дифференциальному уравнению в частных производных и заданным условиям, может быть определена с помощью однократноголибо двукратногопреобразования Лапласа.

В первом случае преобразование Лапласа применяют к дифференциальному уравнению в частных производных по одной из двух независимых переменных в предположении, что другая остается неизменной. Полученное обыкновенное дифференциальное уравнение относительно изображения искомой функции интегрируется не операционным методом, а классическим. Возвращаясь от полученного изображения к оригиналу, находим решение поставленной задачи.

Во втором случае к обыкновенному дифференциальному уравнению относительно изображения искомой функции опять применяют преобразование Лапласа, но по другой независимой переменной. В результате получают алгебраическое уравнение, из которого находят «двукратное» изображение искомой функции. С помощью двух обратных преобразований Лапласа восстанавливается искомая функция

Решение дифференциального уравнения, найденное с помощью двукратного преобразования Лапласа, не зависит от того, в какой последовательности применялись прямые и обратные преобразования.

Удачно выбранный порядок в двукратном преобразовании может значительно облегчить решение задачи.

Операционный метод удобнее применять при решении задач математической физики, если:

начальные условия нулевые;

существуют изображения для всех функций, входящих в уравнение;

изображение искомого решения удовлетворяет следующим условиям:

Пример 1

Найти решение уравнения , если

Применим преобразование Лапласа по переменной , тогда

Заданное уравнение примет вид:

и решим методом Бернулли.

Согласно этому методу,

Осуществляя данную подстановку в уравнение, получим

или

Решая первое уравнение системы, получим

или

Подставим найденную функцию W во второе уравнение, будем иметь:

Откуда

Тогда

Так как

- изображение по Лапласу, то и тогда принимаем С=0, то есть

Возвращаясь к оригиналу, получим

Пример 2.

Найти решение уравнения , удовлетворяющее условиям ,

Сначала применим преобразование Лапласа по переменной , получим

Условие примет вид

Применим преобразование Лапласа еще раз, но уже по переменной , получим

Это алгебраическое уравнение относительно «двукратного» изображения -

Решим его:

Возвращаясь к оригиналу по p, получаем:

Возвращаясь к оригиналу по q, получаем:

Пример 3.

Найти формулу колеблющейся струны, закрепленной на концах, если начальные скорости ее точек равны нулю, а начальные отклонения заданы соотношением

Подстановка задачи: найти решение уравнения , , неравное тождественно нулю, удовлетворяющее граничным условиям:

Будем решать эту задачу методом Лапласа. Применим преобразование Лапласа по переменной t, предварительно переписав уравнение в виде

Будем иметь

Граничные условия при этом примут вид:

Относительно изображения искомого решения – функции получим обыкновенное дифференциальное уравнение второго порядка, неоднородное, с правой частью специального вида. Его решение

где - общее решение однородного уравнения

Составим и решим характеристическое уравнение

Тогда общее решение однородного уравнения примет вид

- частное решение неоднородного уравнения. Его вид с точностью до неопределенных коэффициентов будет

Для нахождения B и C вычислим:

и подставим в уравнение:

Отсюда имеем:

Тогда

Для нахождения С1 и С2 удовлетворим граничным условиям:

Очевидно, что С1= С2=0.

Таким образом, имеем

Возвращаясь к оригиналу, получим:

Пример 4.

Найти решение уравнения теплопроводности , удовлетворяющие начальному условию , где и граничным условиям и .

Применяя к уравнению теплопроводности преобразование Лапласа по переменной t, получим:

Граничные условия при этом примут вид:

Перепишем полученное обыкновенное дифференциальное уравнение в виде:

Его общее решение:

где - общее решение однородного уравнения

Составим и решим характеристическое уравнение:

Тогда

Второе слагаемое есть частное решение неоднородного уравнения.

Оно имеет вид .

Тогда

Подставляя в уравнение, находим:

Отсюда

Тогда

Удовлетворим граничным условиям:

При этом

Возвращаясь к оригиналу, получим:

или

 







Дата добавления: 2015-09-18; просмотров: 1670. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Studopedia.info - Студопедия - 2014-2024 год . (0.029 сек.) русская версия | украинская версия