Студопедия — Методы Рунге-Кутта
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы Рунге-Кутта






При использовании методов Рунге-Кутта для решения уравнения на каждом шаге приращения аргумента вычисляются значения функции f(x,y) в нескольких точках. Последовательно находятся:

,

..............., (8.25)

.

Значение неизвестной функции в новой точке вычисляется по формуле:

.

Простейшим примером является второй модифицированный метод Эйлера, который может быть описан следующей последовательностью формул:

,

,

.

Для построения метода Рунге-Кутта требуемого порядка нужно найти коэффициенты .

Обозначим: u(x) – точное решение, проходящее через точку (x, y(x)).

Тогда равно локальной погрешности метода. Если f(x,y) – достаточно гладкая функция своих аргументов, то все ki(h), i=1,..,q и – гладкие функции параметра h. Предположим, что

, (8.26)

если f(x,y) – произвольная достаточно гладкая функция, и найдется такая гладкая функция f(x,y), что . Тогда по формуле Тейлора

.

Итак, если выполнены соотношения (8.26), то метод имеет порядок p. Следовательно, чтобы построить метод порядка p, нужно найти такие коэффициенты , при которых выполняются соотношения (8.26). Это трудоемкая задача. Выведем в системе Mathematica список первых трех производных от функции, стоящей в правой части дифференциального уравнения. Для упрощения выражений – раскрытия скобок и приведения подобных членов – используем функцию Expand. Команда в системе Mathematica:

In[]:= y'[x_]=f[x, y[x]]; Table[{k," ", D[f[x, y[x]], {x, k}]//Expand}, {k, 1, 3}]


Полученный список производных:

Для получения метода третьего порядка необходимо взять q=3. Получается система из шести уравнений с восемью неизвестными. Наиболее употребительная совокупность формул для метода третьего порядка:

(8.27)

Можно усмотреть здесь аналогию с квадратурной формулой Симпсона.

Наиболее употребительный вариант метода Рунге-Кутта четвертого порядка может быть описан последовательностью формул:

(8.28)

В системе Mathcad встроенная функция, реализующая метод Рунге-Кутта четвертого порядка, для решения системы из n уравнений, вызывается командой: rkfixed(y, x1, x2, npoints, D). Аргументы функции:

· y – вектор, содержащий n начальных условий,

· x1, x2 – начальная и конечная точки отрезка интегрирования,

· npoints – количество точек, в которых вычисляется приближенное решение,

· D – вектор, размерности n, содержащий правые части системы уравнений.

В случае одного уравнения y и D – скалярные величины.

Функция rkfixed применяется также для решения уравнения n-го порядка, которое может быть нелинейным относительно старшей производной. В этом случае уравнение предварительно преобразуется к системе уравнений первого порядка.

Функция rkfixed возвращает матрицу, в которой первый столбец содержит значения независимой переменной, а остальные столбцы содержат найденные значения неизвестных функций. Количество строк возвращаемой матрицы равно npoints+1.

Пример 8.9. Сравним погрешности решения начальной задачи тремя методами: простым и модифицированным методами Эйлера, а также методом Рунге-Кутта. Решение в среде Mathcad приведено на рис. 8.6. Точное решение задачи представляет собой экспоненциальную функцию .

На отрезке задаем равномерную сетку значений аргумента с шагом . Последовательность включает решение обычным методом Эйлера. Решение первым модифицированным методом Эйлера представляет последовательность . На левом графике показаны эти два решения и точное решение .

Решение методом Рунге-Кутта находим с помощью встроенной функции rkfixed. Аргументы функции:

1 – значение y в начальной точке;

0, 2 – отрезок интегрирования уравнения;

N – количество узлов сетки;

D – функция, описывающая правую часть дифференциального уравнения, D(t, y)=y.

Решение методом Рунге-Кутта и точное решение показаны на правом рисунке.

Формируем матрицу погрешностей Err. Первый столбец матрицы включает значения . Второй столбец содержит погрешности решения модифицированным методом Эйлера, третий – погрешности решения методом Рунге-Кутта. Приведенные цифры наглядно демонстрируют преимущества метода четвертого порядка.







Дата добавления: 2015-09-18; просмотров: 744. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия