Студопедия — Задача Коши. Метод Эйлера
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача Коши. Метод Эйлера






 

Одношаговые методы решения задачи Коши

Содержание

 

8.1. Задача Коши. Метод Эйлера. 2

8.2. Неявный метод Эйлера. 5

8.3. Погрешности метода решения. 6

8.4. Модифицированные методы Эйлера. 8

8.5. Правило Рунге. 9

8.6. Методы Рунге-Кутта. 11

8.7. Метод Рунге-Кутта-Фельберга. 13

Упражнения. 13

Вопросы для повторения. 14

 

 


 

Задача Коши или начальная задача состоит в нахождении решения дифференциального уравнения при заданном начальном условии:

(8.1)

Пусть – некоторый прямоугольник в плоскости с центром в точке .

Определение. Функция удовлетворяет в прямоугольнике условию Липшица по переменной , если в этом прямоугольнике

, (8.2)

где L – постоянная, не зависящая ни от , ни от .

Теорема Коши. Пусть в уравнении функция в прямоугольнике непрерывна и удовлетворяет условию Липшица по переменной у. Тогда на отрезке , существует единственное решение начальной задачи . При этом предполагается, что на отрезке кривая не выходит за пределы прямоугольника .

Метод Эйлера состоит в том, что интегральная кривая, являющаяся решением задачи, приближенно заменяется некоторой лома­ной линией – ломаной Эйлера. Пусть требуется найти решение задачи Коши на отрезке . Разобьем отрезок на n частей точками ; иными словами введем на отрезке сетку точек: . Будем искать приближенное решение задачи в узлах сетки. Введем обозначения:

– приближенные значения решения в узлах сетки;

;

– шаг приращения аргумента – шаг сетки;

– максимальное значение шага (в частном случае сетка может быть равномерной ).

Метод Эйлера описывается формулой

(8.3)

На каждом шаге истинная интегральная кривая заменяется отрезком касательной. Получаем в итоге линию, называемую ломаной Эйлера.

Из теории дифференциальных уравнений известно утверждение:

начальная задача (8.1) эквивалентна интегральному уравнению

(8.4)

При решении начальной задачи на отрезке от до интегральное равнение (8.4) принимает вид:

, – (8.5)

и требуется приближенно описать интеграл на отрезке .

Иначе метод Эйлера можно получить, разложив решение в ряд Тейлора и ограничившись только линейными слагаемыми ряда:

 
 

(8.6)

Пример 8.1. Ломаная Эйлера для решения задачи Коши: – показана на рис.8.2.


Сформулируем задачу Коши для системы уравнений.

Система урав­нений первого порядка, разрешенных относительно производных

(8.7)

называется нормальной системой. Введя векторные функции , , можно записать систему (8.7) в векторной форме

. (8.8)

Задача Коши состоит в решении системы дифференциальных уравнений (8.8) при заданном начальном условии .

Пример 8.2. Найдем решение задачи Коши:

Эта задача легко решается аналитически. Можно также найти решение в среде Matematica, выполнив команду:

In[]:= DSolve[{y'[x]==-3 y[x]+z[x], z'[x]==y[x]-3 z[x], y[0]==1, z[0]==3}, {y[x], z[x]}, x]//Expand

Получаемый ответ:

Out[]= .

Решение методом Эйлера в среде Mathcad дано на рис. 8.3. Уравнения интегрируются на отрезке . Шаг приращения аргумента выбирается равным , где – число точек на отрезке. Так же, как и в примере 8.1 метод Эйлера записывается в векторной форме. В результате расчетов получаем матрицу, первая строка которой дает приращение , вторая дает значения и третья – значения . На графиках показаны ломаные Эйлера и истинные интегральные кривые. Если уменьшить шаг приращения аргумента, например, положить , то погрешность решения уменьшается. И наоборот, если положить (), то погрешность значительно увеличивается: процесс, описываемый приближенным решением, становится, вообще, немонотонным.

 

 
 

Уравнение n -го порядка, разрешенное относительно старшей производной, имеет вид:

(8.9)

Такое уравнение легко свести к нормальной системе. Для этого введем обозначения:

. (8.10)

Получим в результате систему уравнений первого порядка для неизвестных .

Пример 8.3 Частный случай уравнения колебаний имеет вид: , где a – коэффициент затухания. Зададим начальные условия: . Решение данной задачи Коши представляет собой затухающую косинусоиду.

Преобразуем уравнение к нормальной системе уравнений:

.

На рис. 8.4 показано решение методом Эйлера в системе Mathcad. В матрице Y строка Y0 включает значения независимой переменной, строка Y1 содержит значения V, строка Y2 включает значения Z.

 








Дата добавления: 2015-09-18; просмотров: 1645. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия