Студопедия — Свойства точечных оценок
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства точечных оценок






· Оценка называется несмещённой, если её математическое ожидание равно оцениваемому параметру генеральной совокупности:

,

где обозначает математическое ожидание в предположении, что — истинное значение параметра (распределения выборки ).

· Оценка называется эффективной, если она обладает минимальной дисперсией среди всех возможных несмещенных точечных оценок.

· Оценка называется состоятельной, если она по вероятности с увеличением объема выборки n стремится к параметру генеральной совокупности: ,

по вероятности при .

· Оценка называется сильно состоятельной, если ,

почти наверное при .

Надо отметить, что проверить на опыте сходимость «почти наверное» не представляется возможным, поэтому с точки зрения прикладной статистики имеет смысл говорить только о сходимости по вероятности.

17) Случай, когда выборка объема n извлечена из нормальной генеральной совокупности X~N(a, σ) с неизвестным параметром a и известным σ;. Параметр a является математическим ожиданием (генеральным средним) случайной величины Х. В качестве точечной оценки параметра a возьмем выборочное среднее: . Для уточнения приближенного равенства построим доверительный интервал, накрывающий параметр a с заданной доверительной вероятностью γ;.
Если выборка объема n извлекается из нормальной генеральной совокупности N(a,σ), то статистика имеет нормальное распределение с параметрами: . Поэтому доверительная вероятность γ; удовлетворяет соотношению:

(2)


В этом соотношении неизвестной величиной является точность оценки ε;. Обозначим отсюда

(3)


Значение uкр найдем с помощью таблицы функции Лапласа, учитывая, что
Доверительный интервал для генерального среднего будет иметь вид

(4)


Этот метод построения доверительного интервала применяется и в случае, если генеральная совокупность Х не является нормальной. Согласно центральной предельной теореме, для выборки достаточно большого объема выборочное среднее будет иметь приближенно нормальное распределение с параметрами и где a и σ; — соответствующие параметры генеральной совокупности. В этом случае для построения доверительного интервала используют формулу (4), определяя значение uкр по таблицам функции Лапласа, если n > 30 При n30 значение uкр заменяют на tкр, которое определяют по таблице распределения Стьюдента, и формула (4) принимает вид:

(5)


где tкр = t(k;α), k=n-1, α;= 1-γ; (область двусторонняя).
Если значение параметра σ; неизвестно, то доверительный интервал строят по формуле (5), заменяя параметр σ; с его оценкой


Величина называется средней ошибкой выборки и зависит от способа отбора: в случае конечной генеральной совокупности объема N вносится «поправка на бесповторность отбора», равная

18) Точечное и интервальное оценивание среднего квадратического отклонения. Дисперсия рассматриваемой случайной величины - выборочного среднего квадратического отклонения S – оценивается как дробь

d2 / (4 S2).

Нижняя доверительная граница для среднего квадратического отклонения исходной случайной величины имеет вид

S - U(p)d / (2S) ,

где S2 – выборочная дисперсия,

U(p) – квантиль нормального распределения порядка (1+р)/2 (как и раньше),

d положительный квадратный корень из величины d2, введенной выше.

Верхняя доверительная граница для среднего квадратического отклонения исходной случайной величины имеет вид

S + U(p)d / (2S) ,

где все составляющие имеют тот же смысл, что и выше.

Правила расчетов настоящего подпункта получены из правил предыдущего подпункта с помощью метода линеаризации

19) Статистической гипотезой называется любое предположение о виде неизвестного закона распределения или о параметрах известных распределений.

Проверка гипотезы основывается на вычислении некоторой случайной величины – критерия, точное или приближенное распределение которого известно. Обозначим эту величину через z, ее значение является функцией от элементов выборки z=z(x1, x2, …, xn). Процедура проверки гипотезы предписывает каждому значению критерия одно из двух решений – принять или отвергнуть гипотезу. Тем самым все выборочное пространство и соответственно множество значений критерия делятся на два непересекающихся подмножества S0 и S1. Если значение критерия z попадает в область S0, то гипотеза принимается, а если в область S1, – гипотеза отклоняется. Множество S0 называется областью принятия гипотезы или областью допустимых значений, а множество S1 – областью отклонения гипотезы или критической областью. Выбор одной области однозначно определяет и другую область.

20) Ошибки первого рода и второго рода — это ключевые понятия задач проверки статистических гипотез. Тем не менее, данные понятия часто используются и в других областях, когда речь идёт о принятии «бинарного» решения (да/нет) на основе некоего критерия (теста, проверки, измерения), который с некоторой вероятностью может давать ложный результат

Пусть дана выборка из неизвестного совместного распределения , и поставлена бинарная задача проверки статистических гипотез:

где — нулевая гипотеза, а — альтернативная гипотеза. Предположим, что задан статистический критерий

,

сопоставляющий каждой реализации выборки одну из имеющихся гипотез. Тогда возможны следующие четыре ситуации:

1. Распределение выборки соответствует гипотезе , и она точно определена статистическим критерием, то есть .

2. Распределение выборки соответствует гипотезе , но она неверно отвергнута статистическим критерием, то есть .

3. Распределение выборки соответствует гипотезе , и она точно определена статистическим критерием, то есть .

4. Распределение выборки соответствует гипотезе , но она неверно отвергнута статистическим критерием, то есть .

Во втором и четвертом случае говорят, что произошла статистическая ошибка, и её называют ошибкой первого и второго рода соответственно.

  Верная гипотеза
Результат применения критерия верно принята неверно принята (Ошибка второго рода)
неверно отвергнута (Ошибка первого рода) верно отвергнута

21) Эмпирический вариационный ряд и его график – вариационная кривая – не позволяют с полной уверенностью судить о законе распределения совокупности, из которой взята выборка. На величине любого варьирующего признака сказывается влияние многочисленных, в том числе и случайных, факторов, искажающих четкую картину варьирования. Между тем знание закона распределения позволяет избежать возможных ошибок в оценке генеральных параметров по выборочным характеристикам.

Гипотезу о законе распределения можно проверить разными способами, в частности с помощью коэффициентов асимметрии As и эксцесса Ex. При нормальном распределении эти показатели равны нулю. В действительности такое равенство почти не наблюдается. Выборочные показатели As и Ех,определяемые по формулам (5.6) и (5.9), являются случайными величинами, которые сопровождаются ошибками. В качестве критерия нормальности распределения служат tAs и tEx, являющиеся отношениями выборочных коэффициентов As и Ех к их ошибкам репрезентативности, которые определяют обычно по следующим приближенным формулам:

;

.

Критерий Пирсона, или критерий χ² (Хи-квадрат) — наиболее часто употребляемый критерий для проверки гипотезы о законе распределения. Во многих практических задачах точный закон распределения неизвестен, то есть является гипотезой, которая требует статистической проверки.

Обозначим через X исследуемую случайную величину. Пусть требуется проверить гипотезу о том, что эта случайная величина подчиняется закону распределения . Для проверки гипотезы произведём выборку, состоящую из n независимых наблюдений над случайной величиной X. По выборке можно построить эмпирическое распределение исследуемой случайной величины. Сравнение эмпирического распределения и теоретического (или, точнее было бы сказать, гипотетического — то есть соответствующего гипотезе ) распределения производится с помощью специального правила — критерия согласия. Одним из таких критериев и является критерий Пирсона.

 

22) Н ормальное распределение - также называемое распределением Гаусса — распределение вероятностей, которое в одномерном случае задается функцией плотности вероятности:

где параметр μ; — математическое ожидание, медиана и мода распределения, а параметр σ; - стандартное отклонение(σ;² — дисперсия) распределения.

Таким образом, одномерное нормальное распределение является двухпараметрическим семейством распределений. Многомерный случай описан в многомерном нормальном распределении.

Моменты - Моментами и абсолютными моментами случайной величины называются математические ожидания и соответственно. Если математическое ожидание случайной величины , то эти параметры называютсяцентральными моментами. В большинстве случаев представляют интерес моменты для целых .

Если имеет нормальное распределение, то для неё существуют (конечные) моменты при всех с действительной частью больше −1. Для неотрицательных целых , центральные моменты таковы:

Здесь означает двойной факториал, то есть произведение всех нечетных от до 1.

Центральные абсолютные моменты для неотрицательных целых p таковы:

Последняя формула справедлива также для произвольных .







Дата добавления: 2015-06-15; просмотров: 532. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия