Студопедия — Вывод формулы Тейлора
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вывод формулы Тейлора






 

Теорема 1 (Тейлора).

Пусть функция двух переменных непрерывна со всеми частными производными до порядка включительно в некоторой -окрестности точки . Тогда справедлива формула формулой Тейлора для функции двух переменных

, (1)

где , ; .

► Рассмотрим вспомогательную функцию

, ,

которая является сложной функцией независимой переменной и имеет -ю производную по на отрезке .

Согласно формуле Тейлора для функции одной переменной с остаточным членом в форме Лагранжа имеем

,

(2)

где .

Отсюда при получим

,

где .

Найдем производные функции . Так как и , то первая производная есть:

,

вторая –

.

По индукции получаем:

, ,

.

Тогда

,

,

,

…………………………………………………

,

.

Подставляя в формулу (2), имеем

,

где .◄

Следствие. При условиях теоремы 1 имеет место формула Тейлора с остаточным членом в форме Пеано

. (3)

► Остаточный член формулы Тейлора в форме Лагранжа для функции

является при бесконечно малой величиной более высокого порядка малости по сравнению с , где . Поэтому остаточный член можно представить в форме Пеано

. ◄

 

 







Дата добавления: 2015-06-12; просмотров: 726. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия