Студопедия — Лекции 19-20. Нормальные системы дифференциальных уравнений
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекции 19-20. Нормальные системы дифференциальных уравнений






 

Система дифференциальных уравнений – это система уравнений относительно независимой переменнойx, функций этой переменной и их производных . Система может быть записана в общем виде

( )=0

....................................................................

( )=0

Порядок этой системы равен .

Пользуясь теоремой о неявной функции, можно разрешить систему уравнений относительно старших производных и записать ее в каноническом виде:

( )

..................................................................................

( )

 

Теорема. Любое дифференциальное уравнение, разрешенное относительно старшей производной, можно свести к системе дифференциальных уравнений первого порядка.

Доказательство. Рассмотрим дифференциальное уравнение n-ого порядка

. Обозначим . Дифференциальное уравнение n-ого порядка удалось свести к системе n дифференциальных уравнений первого порядка

 

Применяя эту теорему, можно от канонического вида системы дифференциальных уравнений перейти к системе дифференциальных уравнений первого порядка - нормальному виду системы.

................

.........................................................................................

.................

Получена система из дифференциальных уравнений первого порядка.

 

Удобнее нормальную систему дифференциальных уравнений (систему в нормальной форме) записывать в виде:

.................................. (покоординатная форма)

 

или в виде

, где (векторная форма).

Пример. Эти уравнения сводятся к нормальной системе

()

()

 

Оказывается, не только дифференциальное уравнение n- ого порядка сводится к системе n дифференциальных уравнений первого порядка – нормальной системе, но и нормальная система может быть сведена к одному дифференциальному уравнению.

 

Теорема. Пусть задана система n дифференциальных уравнений первого порядка

..................................

 

Обозначим

...................................

Потребуем, чтобы функция была бы дифференцируемой по совокупности переменных. Потребуем, чтобы определитель

Тогда система n дифференциальных уравнений эквивалентна одному дифференциальному уравнению n-ого порядка.

Доказательство. Метод доказательства называется методом исключения переменных и применяется на практике при сведении системы к одному уравнению. Продифференцируем :

1) Построим алгоритм метода исключения.

Пусть - решения системы (), тогда уравнения системы представляют собой тождества

...................................

Получены выражения производных

,

,

,

...

.

Из этих уравнений можно выразить через , так как определитель системы этих уравнений

Подставим выражения через в последнее уравнение . Так как - решения системы , то они являются и решениями полученного уравнения. Следовательно, система сведена к одному уравнению n-ого порядка.

 

2) Покажем эквивалентность решений. Предположим, что - решения полученного уравнения, покажем, что - решения системы.

, . Обозначим . . Обозначим , и т.д. . Обозначим .

Приравниваем полученные здесь функции введенным ранее, сокращая первые и вторые слагаемые, получаем систему уравнений

.....................................

.

Определитель этой системы равен , следовательно, в качестве единственного решения системы имеем . Поэтому решения эквивалентны. Теорема доказана.

 

Пример.

,

 

Функция называется общим решением системы, если

1. для любого - решение системы

2. для произвольных начальных условий найдется , что .

Если зафиксировать в общем решении, получим частное решение системы.

 







Дата добавления: 2015-04-16; просмотров: 501. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия