Студопедия — Метод подбора формы частного решения
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод подбора формы частного решения






Рассмотрим сначала уравнение второго порядка

 

1) Пусть правая часть представляет собой квазиполином .

Ищем частное решение в виде . Здесь - полином n-ой степени, - полином, степень которого надо определить.

, .

а) Если - не корень характеристического уравнения, то , и многочлен надо выбирать той же степени, что и , т.е. степени n.

б) Если - простой корень характеристического уравнения, то . В этом случае многочлен надо выбирать той же степени, что и , т.е. степени n. Тогда степень многочлена надо выбирать равной n+1. Однако при дифференцировании производная свободного члена (постоянной) равна нулю, поэтому можно выбирать в виде = .

в) Если - кратный корень характеристического уравнения, то . В этом случае многочлен надо выбирать той же степени, что и , т.е. степени n. Тогда степень многочлена надо выбирать равной n+2. Однако при двукратном дифференцировании производная не только свободного члена равна нулю, но и производная линейного члена равна нулю. Поэтому можно выбирать в виде = .

 

Пример.

 

,

, - не корень характеристического уравнения, поэтому частное решение надо искать в том же виде, что и правая часть, . Подставляем в неоднородное уравнение с правой частью .

.

. Корень содержится один раз среди корней характеристического уравнения, поэтому частное решение ищется в виде .

Подставляем в неоднородное уравнение с правой частью .

.

Суммируя оба частных решения, получаем частное решение неоднородного уравнения для исходной правой части:

.

Общее решение неоднородного уравнения будет

.

2) Правая часть имеет вид

1) Если не корни характеристического уравнения, то частное решение ищется в том виде, в котором задана правая часть:

,

где - полиномы степени m – максимальной из степеней полиномов .

б) Если - пара корней характеристического уравнения, то частное решение ищется в виде

,

 

Пример.

Пара корней = - пара корней характеристического уравнения.

Подставляем в неоднородное уравнение, получаем

, откуда

,

 

Рассмотрим неоднородное уравнение n-го порядка, покажем, как в нем применять метод подбора формы частного решения.

Здесь ситуация сложнее, так как в характеристическом уравнении n корней, действительные корни и комплексно сопряженные, простые и кратные корни.

- Пусть правая часть неоднородного уравнения имеет вид

1) Если не является корнем характеристического уравнения, то частное решение неоднородного уравнения ищется в том же виде, что и правая часть .

2) Если - корень характеристического уравнения r-ой кратно сти, то частное решение неоднородного уравнения ищется в виде .

- Пусть правая часть неоднородного уравнения имеет вид

а) Если пара комплексно сопряженных корней не является корнями характеристического уравнения, то частное решение неоднородного уравнения ищется в том же виде, что и правая часть

, где степень m многочленов – максимальная из степеней многочленов .

1) Если пара комплексно сопряженных корней является корнями характеристического уравнения r-ой кратности, то частное решение неоднородного уравнения ищется в виде

.

 

Пример.

,

.

. содержится в корнях характеристического уравнения 2 раза, поэтому . Подставляя это частное решение в неоднородное уравнение с правой частью , получим

. Корни не содержатся в корнях характеристического уравнения, поэтому . Подставляя это частное решение в неоднородное уравнение с правой частью , получим .

. .

+ .

Пример.

.

содержится в корнях характеристического уравнения 3 раза, поэтому .

. Корни (пара корней) содержатся в корнях характеристического уравнения один раз, поэтому . Неопределенные коэффициенты определяются, как и выше, подстановкой в уравнение и сравнением коэффициентов при одинаковых степенях x, при sinx, cosx, xsinx, xcosx.

 







Дата добавления: 2015-04-16; просмотров: 486. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия