Студопедия — Теоремы об арифметике пределов последовательностей
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоремы об арифметике пределов последовательностей






Теорема. Если {xn},{yn} имеют конечные пределы: lim xn=a, lim yn=b, то и сумма (разность) их так же имеет конечный предел, причем lim(xn+ yn)=a+b.

Док-во.

Из условия теоремы следует что xn=a+αn, yn=b+βn, где αn, βn - б.м.

Тогда xn ±yn = (a±b)+(αn±βn), где по лемме о бесконечно малых (αn±βn)-б.м., поэтому можно утверждать что величина (xn ±yn) имеет предел, равный a±b↓

 

Теорема. Если {xn},{yn} имеют конечные пределы: lim xn=a, lim yn=b, то и произведение их также имеет конечный предел, причем lim(xnyn)=ab

Док-во

Т.к. xn=a+αn, yn=b+βn, то xnyn=ab + (a βn + αnb+ αn βn), где последняя скобка в силу леммы о б.м. является величиной б.м. => xnyn→ab.

 

Теорема. Если {xn},{yn} имеют конечные пределы: lim xn=a, lim yn=b, причем b≠0, то и их частное также имеет конечный предел.

Док-во.

Пусть b>0, между 0 и b найдется число r (в силу Т. О плотности Q и I чисел: между двумя вещественными числами можно вставить как рациональное, так и иррациональное число)

Тогда, начиная с некоторого номера N, yn>r>0, так что во всяком случае yn≠0.

Ограничимся теми значениями n, для которых вышесказанное выполняется, тогда отношение xn/yn заведомо имеет смыл.

Т.к. xn=a+αn, yn=b+βn, то xn/ yn – a/b= – a/b= *(b αn - a βn), где последняя скобка есть б.м. по лемме о бесконечно малых.

Множитель - величина ограниченная: 0< <

Поэтому, по лемме о бесконечно малых все произведение в правой части уравнения будет б.м.

А т.к. оно представляет разность м/у xn/ yn и числом a/b, поэтому lim (xn/ yn)=a/b ↓.

 

 

№17 Ограниченные последовательности. Теорема о сходимости монотонной ограниченной последовательности.

Монотонная ограниченная последовательность сходиться.

Док-во.

Предположим, что последовательность {xn}не убывает, т.е. xn+1≫xn (n=1,2,….) (в случае невозрастающей последовательности рассмотрим последовательность {-xn}, которая очевидно неубывает).

По условию теоремы последовательность {xn} ограничена.

Значит множество А ее значений ограничено.

В силу теоремы о существовании supA, infA(Пусть А – непустое подмножество множества R. Тогда, если А ограничено сверху, то ∃ точная верхняя грань, если А ограничена снизу, то ∃ точная нижняя грань множества А) ∃ точная верхняя грань множества А.

Пусть supA=x

Поскольку х – точная верхняя грань множества А, то xn≪x при всех n= 1,2,….., и какого бы ни было ε>0 ∃ хN∈A: x-ε< хN≤x.

В силу монотонности последовательности {xn}: х-ε<xn x при n>N

Следовательно, последовательность {xn} сходиться и =x ↓.

 

№18 Теорема о выборе сходящейся подпоследовательности из ограниченной последовательности (Теорема Больцана-Вейерштрасса)

Из всякой ограниченной последовательности можно выбрать сходящуюся подпоследовательность.

Док-во.

по условию имеем, что найдется с>0 такое, что для всех n/ Разделим отрезок I0=[-c,c] пополам. Один из получившихся отрезков содержит бесконечное число последовательности. Назовем его I1 и в качестве 1-ого члена в искомой подпоследовательности возьмем какой-либо элемент , т.е. положим . Затем отрезок I1 снова разобьем на два и обозначим через I2 ту его половину, которая содержит бесконечно много членов последовательности . Среди них выберем такой член , номер которого n2 превосходит число n1, и положим . Повторяя описанную процедуру применительно к отрезку I2, получим отрезок и член с условием n3>n2. Далее таким же образом найдем , и т.д. В результате мы получим числовую последовательность и последовательность вложенных отрезков , причем при всех . Другими словами, будет подпоследовательностью для .

Теперь докажем, что сходится. Для этого заметим, что длина отрезка равна , откуда при . Это значит, что последовательность вложенных отрезков стягивается и все отрезки имеют единственную общую точку . Именно это число и будет пределом для . Действительно, если то . Но так как при , то и , откуда . И так как , то при , что и требовалось доказать. ;

 







Дата добавления: 2015-06-15; просмотров: 615. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия