Студопедия — Производная скалярного поля по направлению. Градиент
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Производная скалярного поля по направлению. Градиент






 

Как уже отмечалось, числовые функции нескольких переменных при анализе физических проблем часто называют скалярными полями (поле температур, давлений, электростатического потенциала и т.д.)

Рассмотрим скалярное поле и проследим за тем, как оно изменяется в окрестности произвольной точки по выбранному направлению (рис.4.20.1). Для этого введем вектор , сонаправленный с .

Будем считать, что точка имеет координаты:

x + D x, y + D y, z + D z, тогда

Запишем полное приращение функции:

D u = f (x +D x, y +D y, z +D z)–

f (x, y, z).

Если рассматриваемая функция является дифференцируемой, то согласно формуле Тейлора

(4.20.1)

Величина

(4.20.2)

называется производной скалярного поля по направлению вектора . Она характеризует скорость изменения функции по рассматриваемому направлению.

Для вычисления предела (4.20.2) разделим (4.20.1) на D l и учтем, что в силу условия D = l имеем равенства

Поэтому при D l получим формулу для вычисления производной

(4.20.3)

 

Вектор

(4.20.4)

называется градиентом11 скалярного поля в рассматриваемой точке М (x, y, z).

Если ввести вектор , то из (4.20.3) следует, что

Таким образом, производная скалярного поля по направлению равна проекции градиента на это направление:

(4.20.5)

Выясним теперь, как направлен градиент. Для этого введем так называемые поверхности уровня, т.е. поверхности, на которых значение рассматриваемой функции постоянно:

f (x, y, z) = C (4.20.6)

(вспомните знакомые из физики изотермы, изобары, эквипотенциальные поверхности и т.д.).

Ранее отмечалось, что уравнение касательной плоскости к поверхности z = f (x, y) в точке имеет вид

Если уравнение поверхности задано в неявном виде и оно определяет функцию , то вместо нужно подставить

;

Тогда

или окончательно

(4.20.7)

 
 

Уравнение касательной плоскости к поверхности (4.20.6), очевидно, должно совпадать с (4.20.7), так как наличие константы в правой части (4.20.6) не изменит рассматриваемых частных производных. Поэтому вектор grad u направлен по нормали к поверхности уровня (4.20.6) (нормальный вектор к плоскости (4.20.7) имеет вид

и совпадает с grad u (4.20.4)).

Таким образом, градиент обладает следующими свойствами (рис. 4.20.2):

1) направлен по нормали к поверхности уровня;

2) производная по любому направлению равна проекции градиента на это направление.


10 Точка перегиба считается расположенной на самой кривой в отличие от точки экстремума, расположенной на оси абсцисс. Сама кривая считается гладкой, т.е. направление касательной на ней изменяется непрерывно (проанализировать понятие гладкости кривой самостоятельно).

11 [1] gradiens (лат.) – шагающий, идущий







Дата добавления: 2015-10-18; просмотров: 497. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия