Студопедия — Переменных
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Переменных






 

Введем новый тип экстремумов. Для этого рассмотрим целевую функцию , для которой x и y будем считать связанными функциональной зависимостью j(x, y) = 0.

 
 

Геометрический смысл такой ситуации по казан на рис. 22.1, из которого ясно, что в этом случае можно рассматривать новый тип экстремальной задачи: найти точку (), лежащую на кривой j (x, y) = 0, в которой функция принимает максимальное (минимальное) значение. Такого рода экстремумы называют условными экстремумами.

Если уравнение j (x, y) = 0 разрешить относительно y, то поиск условного сведется к поиску обычного экстремума для функции . Однако такая процедура часто бывает нерациональной или невозможной. Поэтому для поиска условных экстремумов был разработан специальный алгоритм – метод множителей Лагранжа, который мы сейчас рассмотрим.

Продифференцируем как сложную функцию, помня, что :

Отсюда с помощью необходимого условия экстремума получаем

(4.22.1)

С другой стороны, х и у связаны функциональной зависимостью , с помощью которой находим

(4.22.2)

Сравнивая производные (4.22.1) и (4.22.2), получаем равенство

равносильное системе двух уравнений

(4.22.3)

относительно неизвестных х, у, l.

Введем так называемую функцию Лагранжа:

F (x, y, l) =f (x, y) +lj (x, y). (4.22.4)

Тогда необходимые условия экстремума для (4.22.4)

 

 
 

приводят нас к уравнениям (4.22.3) и условию j (х, у) = 0. Решая эти три уравнения, мы найдем точку условного экстремума.

Таким образом, с помощью функции Лагранжа задача о поиске условного экстремума сводится к задаче о локальных экстремумах для функции Лагранжа.

Для общего случая, когда z = f ,

функция Лагранжа строится по аналогии с (4.22.4):

П р и м е р

Найти кратчайшее расстояние от начала координат до кривой .

Целевая функция здесь имеет вид . Составляем функцию Лагранжа

,

а затем записываем необходимые условия локального экстре­мума:

(4.22.5)

Используя первые два уравнения системы (4.22.5), находим

.

Подставляем это выражение в последнее уравнение системы (4.22.5)

Интерпретация полученных результатов ясна из рис. 4.22.2: в первой точке целевая функция достигает максимума, а во второй – миниму­ма, причем

;

Достаточные условия условного экстремума используются очень редко и в нашем курсе не рассматриваются.

Задание для самостоятельного решения

1. Найти экстремумы функции z = x 3при условии

2. Найти экстремумы функции z = xy при условии 2 х+ 3 у= 1.







Дата добавления: 2015-10-18; просмотров: 366. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2024 год . (0.015 сек.) русская версия | украинская версия