Студопедия — Решение. 1) Интегрируя первый раз, получим
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. 1) Интегрируя первый раз, получим






1) Интегрируя первый раз, получим . После повторного интегрирования будем иметь

 

Следовательно, - общее решение.

2) Чтобы найти частное решение, подставим в полученное общее решение и в выражение для первой производной значения и , получим систему двух уравнений с неизвестными и :

Подставив найденные и в общее решение получим искомое частное решение .

 

2.2.2 Уравнение вида

. (2.7)

 

Уравнение (2.7) не содержит искомой функции и ее нескольких последовательных производных (производных до (k-1) включительно). С помощью замены понизим порядок уравнения на единиц, тогда

 

. (2.8)

Общее решение уравнения (2.8) имеет вид

.

 

Тогда искомая функция решение уравнения (2.7) получается с помощью кратного интегрирования функции (см. п. 2.2.1).

Для дифференциального уравнения второго порядка не содержащего явно искомой функции y подстановка , тогда преобразует данное уравнение в уравнение I порядка

Пример Найти общее решение уравнения .

Решение. Данное уравнение не содержит и . Положим , тогда и уравнение будет иметь вид: . Это линейное уравнение первого порядка (см. п.1.4.). Его общее решение имеет вид . Так как , то для отыскания искомого общего решения надо проинтегрировать уравнение . Таким образом,

,

тогда

.

Следовательно, , где - произвольные постоянные, является общим решением заданного уравнения.

 

 

2.2.3 Уравнения вида

. (2.9)

 

Уравнение (2.9) не содержит явно независимую переменную . В этом случае примем за независимую переменную и введем новую функцию . Считая, что есть функция от и через посредство зависит от и, применяя правило дифференцирования сложных функций, получим для производных от по выражения

 

,

 

,

 

аналогично вычисляются .

Подставляя в уравнение (2.9) вместо и т.д., увидим, что в новых переменных порядок уравнения будет , т.е. на единицу ниже.

Если это преобразованное уравнение проинтегрировано и - его решение, то нахождение общего интеграла данного уравнения сводится к интегрированию

.

Откуда получаем общее решение ОДУ (2.9)

 

.

Одна из произвольных постоянных входит в качестве слагаемого к , а это означает, что всякую интегральную кривую можно перемещать параллельно оси .

Если дифференциальное уравнение не содержит независимой переменной x, искомой функции y(x) и ее производных до (k-1) порядка включительно, то порядок уравнения можно понизить на (k+1) применяя подстановку

, а затем .

Например, для дифференциального уравнения второго порядка, не содержащего независимой переменной x, т.е. уравнение имеет вид подстановка сводит уравнение к уравнению первого порядка

Пример Найти общий интеграл уравнения .

 

Решение. Положим

и подставим в исходное уравнение, тогда получим

 

.

 

Сократим на , при этом учтем теряемое решение или и получим

.

Это уравнение рассматриваемого вида, делая ту же замену придем к уравнению

.

Сократив на (при этом учитываем еще одно решение , т.е. и ), получим

 

.

Проинтегрировав уравнение , находим , или Окончательно получим

, где .

Это семейство парабол. Заметим, что в общее решение входят и потерянные ранее частные решения (кроме ).

 

 







Дата добавления: 2014-11-12; просмотров: 563. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия