Студопедия — Поверхностные интегралы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поверхностные интегралы






 

4.1.Поверхностный интеграл I рода

 

Пусть поверхность S задана в пространстве уравнением z = z (x, y), где функция z (x, y) имеет непрерывные частные производные в некоторой области DÍ R 2. В этом случае будем называть поверхность гладкой.

Пусть теперь поверхность S содержится в области определения непрерывной функции f (x, y, z). Разобьем поверхность на n частей S1, S2, …, Sn; обозначим через DSk площадь части Sk, а через d k – ее диаметр. Пусть d = – диаметр разбиения. Пусть ()Î Sk. Составим интегральную сумму: S= . (*)

Определение. Если существует предел интегральных сумм (*) при d ®0, не зависящий от разбиения, то он называется поверхностным интегра л ом I рода функции f (x, y, z) по поверхности S и обозначается .

Примем без доказательства следующие свойства поверхностного интеграла I рода.

1о. равен площади поверхности S.

2о. = l .

3о. = +

+ .

Напомним, что свойства 2о и 3о – это свойства линейности.

4о. Если на поверхности S выполняется неравенство f (x, y, zg (x, y, z), то ³ .

5о. Если поверхность S разбита на части S1 и S2, не имеющие общих внутренних точек, то = = + (свойство аддитивности).

6о. .

7о. Если функция f (x, y, z) непрерывна на поверхности S и s – площадь поверхности, то существует такая точка (x, h, z)Î S, что = f (x, h, z).s (теорема о среднем).

Можно доказать, что если поверхность S задана уравнением z = z (x, y), (x, y)Î D, то вычисление поверхностного интеграла I рода сводится к вычислению двойного интеграла: = .

4.2.Поверхностный интеграл II рода

 

Пусть опять поверхность S задана уравнением z = z (x, y), где функция z (x, y) имеет непрерывные частные производные в некоторой области DÍ R 2. Пусть S содержится в области определения непрерывной функции f (x, y, z). Зафиксируем одну из сторон поверхности и разобьем ее на n частей S1, S2, …, Sn. Обозначим через Dsk площадь проекции Sk на плоскость x O y, взятую со знаком «+», если нормаль к выбранной стороне поверхности составляет с осью O z острый угол, и со знаком «–» – в противном случае. В каждой части Sk выберем точку () и составим интегральную сумму: S = . (*)

Определение. Если существует предел интегральных сумм (*) при d ®0 (d – диаметр разбиения), не зависящий от разбиения, то он называется поверхностным интегралом II рода функции f (x, y, z) по переменным х и у по выбранной стороне поверхности S и обозначается . Аналогично определяются поверхностные интегралы II рода по переменным у и z или х и z.

В общем виде поверхностный интеграл II рода имеет вид: . Если выбранная сторона поверхности имеет вектор нормали , то поверхностный интеграл второго рода связан с интегралом первого рода формулой: = .

Поверхностный интеграл II рода обладает свойствами линейности и аддитивности. Он меняет знак при перемене стороны поверхности.

Вычисление поверхностного интеграла II рода сводится к вычислению двойного интеграла следующим образом. Рассмотрим интеграл по х и у. Пусть поверхность S задана уравнением z = z (x, y) и пусть D xy – проекция S на плоскость х О у. Выберем сторону поверхности так, чтобы нормаль к ней образовывала с осью О z острый угол. Тогда

= . Если же выбрать другую сторону поверхности, то интеграл берется с минусом. Аналогично вычисляется интеграл и по другим парам координат.

4.3.Формула Остроградского-Гаусса

 

Формула Остроградского-Гаусса устанавливает связь между поверхностным интегралом II рода по замкнутой поверхности и тройным интегралом по области, ограниченной этой поверхностью:

= .

Здесь V – область, ограниченная гладкой поверхностью S; функции P(x, y, z), Q(x, y, z) и R(x, y, z) непрерывны в этой области вместе со своими частными производными; интегрирование ведется по внешней стороне.

Пример. Вычислим , где S – внешняя сторона поверхности пирамиды, ограниченной плоскостями 2 х –3 у + z =6, x =0, y =0, z =0.

По формуле Остроградского-Гаусса

= =

= = – . Этот тройной интеграл равен объему пирамиды с вершинами A(3; 0; 0), B(0; –2; 0), C(0; 0; 6), O(0; 0; 0). V= = 6. Значит,

= –6.·

4.4.Формула Стокса

 

Формула Стокса устанавливает связь между поверхностным и криволинейным интегралами II рода:

=

= . Здесь S – область, ограниченная гладкой кривой L; функции P(x, y, z), Q(x, y, z) и R(x, y, z) непрерывны на этой поверхности вместе со своими частными производными; интегрирование ведется в положительном направлении (то есть S остается слева).

Пример. Вычислим , где L – окружность х 2+ у 2=R2 в плоскости z =0, сначала непосредственно, а затем по формуле Стокса.

Перепишем уравнение окружности в параметрической форме: x =Rcos t, y =Rsin t, z =0, t Î [0; 2π ].

Тогда =

= + =

= – +0 = – .

По формуле Стокса =

= =

= , где D – круг (поверхность S совпадает со своей проекцией на плоскость х О у). Вычислим двойной интеграл с помощью полярной замены: =

= = = . Значит, исходный интеграл равен –







Дата добавления: 2014-11-12; просмотров: 1202. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия