Студопедия — Порядок выполнения работы. Приборы и реактивы: штатив с пробирками; 0,5 М растворы: гидроксида аммония, сульфата меди (II), хлорида меди (II)
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Порядок выполнения работы. Приборы и реактивы: штатив с пробирками; 0,5 М растворы: гидроксида аммония, сульфата меди (II), хлорида меди (II)






Приборы и реактивы: штатив с пробирками; 0, 5 М растворы: гидроксида аммония, сульфата меди (II), хлорида меди (II), сульфата никеля (II), хлорида никеля (II), трихлорида железа, сульфата железа (II), родонида аммония (или калия), нитрата ртути (II), йодида калия, хлорида кобальта (II), железоаммо­нийных квасцов, гидроксида калия, хлорида бария, сульфида аммония, оксалата аммония, гексацианоферрата (II) калия, гексацианоферрата (III) калия.

 

Х о д р а б о т ы

 

Получение катионных комплексных соединений

Опыт 1. Налить в пробирку 8–10 капель раствора сульфата или хлорида меди (II) и добавить по каплям раствор гидроксида аммония до образования зеленовато-голубого осадка основной соли (CuOH)2SO4 или CuOHCl. При последующем добавлении раствора аммиака наблюдать растворение осадка и получение окрашенного раствора комплексной соли [Cu(NH3)4]SO4 или [Cu(NH3)4]Cl2.

Опыт 2. Внести в пробирку 8–10 капель раствора сульфата или хлорида никеля (II) и добавить по каплям раствор аммиака. Обратить внимание на происходящие изменения, связанные с первоначальным образованием осадка основной соли NiOHCl или (NiOH)2SO4 с последующим растворением полученного осадка в избытке аммиака и образованием окрашенного раствора комплексной соли [Ni(NH3)4]Cl2 или [Ni(NH3)4]SO4.

 

Получение анионных комплексных соединений

Опыт 3. Внести в пробирку 10 капель раствора хлорида железа (III) и прибавить по каплям раствор роданида аммония или роданида калия. Что наблюдаете? К полученному раствору роданида железа (III) прилить раствор фторида натрия или аммония. Наблюдать исчезновение окраски раствора вследствие образования комплексного соединения: гексафтороферрата (III) натрия или аммония.

Опыт 4. Внести в пробирку 6–8 капель нитрата ртути (II) и добавить по каплям раствор йодида калия до образования осадка
йодида ртути (II) и последующего его растворения в избытке раствора йодида калия.

 

Различие между простыми и комплексными ионами

Опыт 5. Налить в пробирку 8–10 капель раствора хлорида железа (III) и прибавить по каплям раствор роданида аммония или роданида калия до появления кроваво-красного окрашивания раствора, свидетельствующего о наличии в растворе ионов Fe3+. В другую пробирку внести раствор K3[Fe(CN)6] и прибавить к нему несколько капель раствора роданида калия (или аммония). Образуется ли при этом раствор темно-красного цвета, свидетельствующий о присутствии в растворе иона Fe3+?

Разрушение комплексных ионов при разбавлении растворов

Опыт 6. Налить в пробирку 10–12 капель раствора хлорида кобальта (II) и прибавить несколько капель концентрированного раствора роданида калия (или аммония). Наблюдать появление окрашенного раствора вследствие образования комплексного соединения K2[Со(CNS)4]. Полученный раствор разбавить водой до появления первоначальной розовой окраски, характерной для ионов Со2+.

 

Диссоциация двойных солей

Опыт 7. В три пробирки внести по 10–12 капель раствора железоаммонийных квасцов NH4Fe(SO4)2. В первую пробирку прилить несколько капель раствора роданида калия (или аммония). Окрашивание раствора в темно-красный цвет указывает на присутствие в растворе ионов Fe3+. Во вторую пробирку добавить избыток раствора гидроксида калия или натрия, содержимое пробирок нагреть. Выделение аммиака свидетельствует о наличии в первоначальном растворе ионов NH . В третью пробирку прибавить несколько капель раствора хлорида бария. Образование белого осадка свидетельствует о присутствии в исходном растворе ионов SO .

 

Разрушение комплексного иона осаждением

комплексообразователя

Опыт 8. В две пробирки внести по несколько капель сульфата меди. В первую пробирку добавить такой же объем раствора оксалата аммония, а во вторую – сульфида аммония. Отметить цвет появившихся в пробирках осадков. Пробирки с осадками сохранить в качестве контрольных образцов.

В двух других пробирках получить комплексное соединение меди: прибавить к 6–8 каплям раствора сульфата меди (II) раствор аммиака до растворения образовавшегося вначале осадка основной соли меди. Далее в одну из пробирок с комплексной солью прилить раствор оксалата аммония, а в другую – раствор сульфида аммония. В каком случае выпадает осадок? Полученный осадок сравнить с осадками в контрольных пробирках.

 

Комплексные соединения в реакциях обмена

Опыт 9. В пробирку внести несколько капель раствора гексацианоферрата (II) калия, затем добавить несколько капель раствора хлорида железа (III). Наблюдать образование осадка комплексной соли железа (III) (берлинской лазури). Эта реакция является качественной для иона Fe3+.

Налить в пробирку несколько капель раствора гексацианоферрата (III) калия и добавить несколько капель раствора сульфата железа (II). Наблюдать образование осадка комплексной соли железа (II) (турнбулевой сини). Эта реакция является качественной для иона Fe2+.

 

Обработка экспериментальных данных

Опыт 1. Написать уравнения реакций в молекулярном и ионно-молекулярном виде. Указать цвет осадков и растворов. Назвать полученные соединения.

Опыт 2. Составить уравнения реакций в молекулярном и ионно-молекулярном виде. Описать цвета осадков и растворов. Назвать полученные соединения.

Опыт 3. Написать уравнения реакций в молекулярной и ионно-молекулярной форме, указать цвета полученных соединений.

Опыт 4. Составить уравнения реакций в молекулярном и ионно-молекулярном виде. Указать цвета осадка и раствора. Назвать продукты реакций. Указать, к какому типу относится полученное комплексное соединение.

Опыт 5. Написать уравнение реакции взаимодействия раствора хлорида железа (III) с роданидом аммония. Составить уравнение диссоциации комплексного соединения и выражение константы нестойкости комплексного иона. Сделать вывод о различии между простыми и комплексными ионами.

Опыт 6. Написать уравнение реакции получения комплекса. Назвать полученный комплекс, определить, к какому классу его можно отнести. Составить уравнение диссоциации комплексного соединения и выражение константы нестойкости комплексного иона. Как влияет концентрация раствора на устойчивость комплексного соединения?

Опыт 7. Составить в молекулярной и ионно-молекулярной фор­ме реакции взаимодействия двойной соли с растворами: роданида аммония, гидроксида калия (или натрия), хлорида бария. Написать уравнение диссоциации двойной соли. Сделать вывод о различии между комплексными и двойными солями.

Опыт 8. Записать реакцию образования аммиачного комплекса меди (II). Составить уравнение реакции взаимодействия комплексной соли с сульфидом аммония. Что происходит с комплексным ионом в каждом случае? Объяснить, почему не выпал осадок в случае прибавления оксалата аммония. При объяснении воспользоваться значениями произведения растворимости образующихся осадков (см. прил. 2). Константу нестойкости иона [Co(NH3)6]2+ принять равной .

Опыт 9. Записать уравнения реакций в молекулярной и ионно-молекулярной форме. Назвать полученные комплексные соединения.







Дата добавления: 2014-11-10; просмотров: 2468. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия