Студопедия — Тема 2. Системы линейных уравнений
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 2. Системы линейных уравнений






 

Система m линейных уравнений с n переменными (общий вид). Матрица системы. Матричная форма записи системы линейных уравнений. Совместные (определенные и неопределенные) и несовместные системы. Теорема Крамера о разрешимости системы n линейных уравнений с n переменными. Решение такой системы: а) по формулам Крамера; б) методом обратной матрицы; в) методом Гаусса. Понятие о методе Жордана-Гаусса. Теорема Кронекера-Капелли. Условие определенности и неопределенности любой совместной системы линейных уравнений. Базисные (основные) и свободные (неосновные) переменные. Базисное решение. Система линейных однородных уравнений и ее решения. Понятие о модели Леонтьева. ([1 или 5, § 2.1 – 2.7]; [2 или 6, § 2.1, 2.5], или [3, § 2.1 – 2.8], или [4, § 2.1 – 2.8]).

При изучении материала темы следует освоить матричную форму записи заданной системы n линейных уравнений с n переменными и уметь переходить к этой форме от общего вида системы и наоборот. Необходимо знать и уметь объяснить, какие системы уравнений называются совместными (определенными и неопределенными) и несовместными. Надо твердо уяснить, что вопрос о разрешимости системы n линейных уравнений с n переменными устанавливается с помощью теоремы Крамера ([1, или 5, или 3, § 2.2]). Решаются же такие системы различными способами: по формулам Крамера, с помощью обратной матрицы и методом Гаусса. Наиболее важен для практики метод Гаусса, имеющий по сравнению с другими способами решения ряд достоинств: он менее трудоемок, позволяет однозначно установить, является ли данная система определенной, неопределенной или несовместной, а в случае совместности системы – определить число ее линейно независимых уравнений и исключить «лишние».

Метод Жордана–Гаусса [2 или 5, § 2.3, пример 2.49] или [3, § 2.8, пример 2.44] позволяет быстрее, чем классический, решать систему уравнений и потому востребован в прикладных математических курсах. При этом следует иметь в виду, что в реальных прикладных задачах системы уравнений с достаточно большим числом уравнений и переменных решаются с помощью пакетов прикладных программ, например, Excel, MathCAD и др.

Практический интерес в приложениях представляет случай, когда число m уравнений системы меньше числа n переменных . Рассмотрение таких систем приводит к разбиению переменных на базисные (основные) и свободные (неосновные) переменные и выделению из общего числа решений системы базисных решений, в которых все свободные (неосновные) переменные равны нулю.

Согласно теореме Кронекера – Капелли система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы А равен рангу расширенной матрицы , т.е. . При этом, если (n – число переменных), то система определенная, если – неопределенная и имеет бесконечное множество решений.

Для решения системы m линейных уравнений с n переменными вовсе не требуется находить специально ранги и , а достаточно применить метод Гаусса. Если хотя бы одно из уравнений системы на «прямом ходе» метода Гаусса приводится к виду , то система несовместная, если к виду 0=0, то система совместная и неопределенная. В последнем случае уравнения вида 0=0 исключаются из системы, а члены уравнения с свободными переменными переносятся в правые части уравнений. Далее, используя «обратный ход» метода Гаусса, получают выражения r базисных переменных через свободных, т.е. общее решение системы (см. [1 или 5, пример 2.4], [2 или 6, пример 2.36] или [3, примеры 2.4, 2.44]).

Следует иметь ввиду, что общее число решений совместной системы линейных уравнений бесконечно, в то время как число ее базисных решений конечно и не превосходит числа сочетаний (а точнее , где r – ранг матрицы системы).

Особенностью рассматриваемых далее систем однородных уравнений является то, что они всегда совместны, так как имеют, по крайней мере, нулевое решение (0, 0,..., 0). Ненулевое решение такие системы имеют только тогда, когда ранг матрицы системы меньше числа переменных, т.е. , или, что то же самое, когда определитель матрицы А равен нулю: .

Следует отметить, что матричное уравнение , к которому сводится система линейных уравнений (А – матрица системы, Х – неизвестный столбец переменных, В – столбец свободных членов) может рассматриваться и в случае, когда Х – неизвестная матрица. Вообще матричные уравнения простейшего вида с неизвестной матрицей Х имеют вид (1), (2), (3), где А, В, С, Х – матрицы таких размеров, что все используемые операции возможны, а левые и правые части этих матричных уравнений представляют матрицы одинаковых размеров.

Решения матричных уравнений (1) и (2) соответственно и (если А – квадратная матрица, ), а матричного уравнения (3) (если А и С – квадратные матрицы и , ).

 







Дата добавления: 2014-11-10; просмотров: 1379. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия