Студопедия — Цилиндрически-симметрическое распределение зарядов.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Цилиндрически-симметрическое распределение зарядов.






Решим задачу об определении и для бесконечного цилиндра радиуса R, заряженного с объемной плотностью

 

(7.1)

 

Ось цилиндра совмещена с осью z, r - цилиндрическая радиальная координата. Те же рассуждения о симметрии, которые были сделаны в начале §6, приводят к тому, что цилиндрически-симметричное поле имеет вид:

 

(7.2)

 

- орт, касательный к цилиндрической радиальной координатной линии.

Для того, чтобы иметь дело с конечным значением полного заряда в теореме Гаусса, рассмотрим область трехмерного пространства, ограниченную плоскостями z = 0 и z = H.

Рис.8

 

а) Найдем - внутри цилиндра радиуса R. Через точку Р во внутренней области заряженного цилиндра проведем цилиндрическую поверхность радиуса r < R. Для полученного цилиндра радиуса r и высоты H можно применить теорему Гаусса

 

(7.3)

 

Используя второе основное свойство поверхностного интеграла (5.5), получаем, что интеграл по замкнутой поверхности в (7.3) разлагается на сумму трех интегралов: по первому и второму основаниям и по боковой поверхности вырезанного нами цилиндра

 

(*)

 

Нормали к основаниям направлены параллельно оси z, а нормаль к боковой поверхности параллельна . Поэтому из формулы для векторного элемента поверхности в цилиндрической системе координат (4.12) следует, что

 

(7.4)

 

Из (7.2) и (7.4) видно, что

 

(*)

 

Легко видеть, что

 

(**)

 

Подставляя последние два результата в теорему Гаусса (7.3) получаем

 

(7.5)

 

б) Найдем вне цилиндра аналогичным способом. Используем теорему Гаусса для цилиндра высоты Н и радиуса r < R. Вместо (**) имеем

 

(***)

 

окончательно

 

(7.6)

 

в) Найдем потенциал внутри и вне заряженного цилиндра. Во внутренней области из (7.2) и (7.5) получаем

 

(7.7)

 

Для определения постоянной интегрирования А положим

 

 

Отсюда следует, что А обращается в нуль. Для внешней области имеем

 

(7.8)

Постоянная интегрирования В получается из условия «сшивания» внешнего и внутреннего решений:

 

(7.9)

 

Окончательно имеем, что

 

(7.10)

 







Дата добавления: 2015-10-12; просмотров: 448. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия