Студопедия — Тема 2.1.7 Реальный газ. Уравнение состояния реального газа.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 2.1.7 Реальный газ. Уравнение состояния реального газа.






 

План

1. Реальный газ.

2. Уравнение состояния реального газа.

 

Литература:

[1] Чолпан П.П. Фізика: Підручник. – К.: Вища к.., 2004. –119с. (§ 4.9)

 

1 Опыт свидетельствует, что законы, характеризующие идеальный газ, в первом приближении можно применять к разреженным реальным газам. Для реальных газов с умеренной и большой плотностью отклонения от законов идеального газа значительны.

Для многих реальных газов взаимная потенциальная энергия частиц изменяется зависимо от расстояния между ними по закону Леннарда-Джонса:

где первый член учитывает притяжение между частицами, а второй — отталкивание между ними.

Силы притяжения между частицами реального газа называют вандерваальсовыми силами по имени голландского физика Й. Ван дер Ваальса (1837—1923), который их открыл. Теорию вандерваальсовых сил притяжения разработал П. Дебай для газов, молекулы которых имеют постоянный дипольный момент, В. Кеезом — для газов, в которых лишь часть молекул характеризуется постоянным дипольным моментом, и Ф. Лондон — для газов з к. альніенн молекулами.

Хотя сейчас известно свыше 150 уравнений состояния реальных газов, найденных эмпирически и теоретически, уравнения состояния реального газа Ван дер Ваальса (1873 г.) не утратило своего научного значения. Это объясняется прежде всего тем, что оно теоретически обоснованно и имеет сравнительно простой вид. Для моля реального газа

где а/V2 — поправка на силы притяжения между молекулами, или так называемое внутреннее давление газа; b — поправка на собственный объем молекул. Важным результатом уравнения Ван дер Ваальса является то, что оно допускает непрерывный переход между жидким и газообразным состояниями. Сравнивая теоретические изотермы Ван дер Ваальса с экспериментальными изотермами Эндрюса для СО, пришли к более глубокому пониманию физического содержания как отдельных участков изотерм, которые отвечают одно- и двухфазовым состояниям, так и критического состояния вещества.

2 На рис. изображены изотермы Ван дер Ваальса для разных температур (Т1 < Т2 < Т3 < Т4). На этих изотермах наблюдается s-образный участок, который тем больше, чем ниже температура, которой соответствует изотерма. Чтобы теория Ван дер Ваальса по крайней мере качественно объясняла фазовые переходы, ее формально дополняют правилом Максвелла. Согласно с этим правилом горизонтальные прямые (штриховая линия АО) проводят так, чтобы площади s1 и s2, отсекаемые этой прямой и изотермой Ван дер Ваальса, были одинаковы. Изотермы с горизонтальным участком совпадают с экспериментальными изотермами Эндрюса. Рассмотрим внимательнее изотермы Ван дер Ваальса на примере изотермы, соответствующей температуре Т1. Отрезок G/G отвечает газообразному состоянию. GА — двухфазному состоянию жидкость — пар,

АА’ — жидкому состоянию, Gg — переохлажденному пару, а аА — перегретой жидкости. Отрезок ga практически реализовать невозможно, поскольку для состояний, соответствующих этому отрезку, с увеличением объема должно возрастать и давление, то есть > 0, что противоречит условию стабильного состояния. Кривую АВСDЕFG называют бинодалью. Она отделяет геометрическое место точек, соответствующих двухфазным и метастабильным однофазным состояниям. Вершина этой кривой совпадает с критической точкой D, а критическая изотерма, в отличие от других изотерм, имеет лишь точку перегиба. Для критической точки

и

Тогда из уравнения Ван дер Ваальса несложно получить значения критических параметров через постоянные а и b:

Заметим, что хотя уравнение Ван дер Ваальса и правильно передает основные закономерности поведения реальных газов, но количественные результаты, полученные с помощью этого уравнения, не всегда удовлетворительны Поэтому возникла потребность поиска других, более точных уравнений состояния.

Одной из причин несовершенства уравнения Ван дер Ваальса является то, что в этом уравнении не берется во внимание возможность ассоциации молекул то есть образование групп. Современные экспериментальные и теоретические исследования свидетельствуют о том, что в газах, даже при высоких температурах, молекулы образуют группы из двух, трех, четырех и более молекул. Чем ниже температура, тем больше многоатомных молекулярных комплексов, тем прочнее связь между молекулами в группе. При определенных условиях начинается процесс интенсивного группообразования — процесс конденсации.

Теория реальных газов приобрела заметное развитие вследствие применения новых статистических методов, предложенных М. Боголюбовым, Р. Майером и другими учеными.

Уравнение состояния реальных газов, выведенное статистическими методами, имеет такой вид:

где Вn — віріальні коэффициенты, которые можно рассчитать, если известен характер взаимодействия между молекулами.

 

Контрольные вопросы

1 Почему в молекулярной физике преимущество отдают статистическому методу исследования?

2 Какие существуют агрегатные состояния вещества?

3 Какие силы называют вандерваальсовыми силами?

4 Проанализируйте уравнение Ван дер Ваальса и его изотермы.


Содержательный модуль 2.2 Законы термодинамики

 







Дата добавления: 2015-10-15; просмотров: 433. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия