Студопедия — Тепловой баланс системы Земля-атмосфера
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тепловой баланс системы Земля-атмосфера






Академик С. П. Хромов писал: «Земля в целом, атмосфера в отдельности и земная поверхность находятся в состоянии теплового равновесия, если рассматривать длительный период наблюдений. Приток и отдача тепла равны или почти равны».

Рис. 4 Радиационный баланс Земли

Земля получает тепло, поглощая солнечную радиацию в атмосфере и особенно на земной поверхности. Теряет тепло путём излучения в мировое пространство длинноволной радиации земной поверхности и атмосферы. Приток и отдача тепла с верхней границы атмосферы должны быть равны.

Атмосфера получает тепло, поглощая солнечную и земную радиацию и теряет, отдавая его

Радиационный баланс земной поверхности за год может быть, либо положительным, либо вверх (в космическое пространство) и вниз (на Землю). Атмосфера обменивается теплом с земной поверхностью нерадиационным путём. Тепло переносится от земной поверхности в воздух или обратно путём теплопроводности. Тепло также затрачивается на испарение воды с подстилающей поверхности, затем оно выделяется в атмосфере при конденсации водяного пара.

И, наконец, на земной поверхности уравновешиваются приток тепла вследствие поглощения солнечной и атмосферной радиации, отдача тепла путём излучения самой земной поверхности и нерадиационный обмен теплом между ней и атмосферой.

Если за 100 единиц принять солнечную радиацию, входящую в атмосферу (рис. 5): из них 23 – отражаются облаками и уходят в мировое пространство; 20 - поглощается воздухом, облаками и идут на нагревание атмосферы; 30 – рассеиваются в атмосфере (из них 8 – уходят в мировое пространство). До земной поверхности доходят 27 единиц прямой и 22 единицы рассеянной радиации; из них 25 + 20 единиц поглощаются и идут на нагрев верхних слоёв почвы и воды, а 2 + 2 отражаются и уходят в мировое пространство.

Итак, с верхней границы атмосферы в мировое пространство уходит 35 единиц солнечной радиации, т.е. альбедо Земли 35 %.

Для сохранения радиационного равновесия, необходимо, чтобы в мировое пространство уходило ещё 65 единиц длинноволнового излучения.

Земная поверхность поглощает 45 единиц прямой и рассеянной радиации. К земной поверхности также направлен поток длинноволнового излучения атмосферы. Атмосфера, соответственно своим температурным условиям, излучает 157 единиц энергии, из них: 102 направлены к земной поверхности и поглощаются ею, а 55 – уходят в мировое пространство. Всего земная поверхность поглощает 147 единиц тепла. При тепловом равновесии она столько же тепла должна терять. Путём собственного излучения земная поверхность теряет 117 единиц тепла, еще 23 единицы расходуется при испарении воды. Путём теплопроводности в процессе теплообмена между земной поверхностью и атмосферой, поверхность теряет 7 единиц тепла (тепло уходит то неё в атмосферу в больших количествах, но компенсируется обратной передачей, которая на 7 единиц меньше). Всего земная поверхность теряет 147 единиц тепла, т.е. сколько получает, поглощая солнечную радиацию.

Из 117 единиц длинноволнового излучения земной поверхности, поглощается атмосферой 107 единиц, 10 – уходят в мировое пространство.

Атмосфера поглощает 20 единиц солнечной радиации, 107 единиц земного излучения, 23 единицы тепла при конденсации водяного пара и 7 единиц в результате теплообмена с земной поверхностью. Всего это составит 157 единиц энергии, т.е. столько, сколько атмосфера излучает сама.

Через верхнюю границу атмосферы проходит 100 единиц солнечной радиации, уходит обратно 35 единиц отражённой и рассеянной солнечной радиации, 10 единиц земного излучения и 55 единиц атмосферного; итого – 100 единиц.

Радиационный баланс земной поверхности за год является положительным или отрицательным в зависимости от широты места. Избыток или недостаток радиации в отдельных зонах компенсируется нерадиационным теплообменом между земной поверхностью и атмосферой.

В процессе теплообмена земная поверхность теряет 7 единиц радиации. Передача тепла в этом случае стимулируется общей циркуляцией атмосферы, т.е. в переносе воздуха из одних широт в другие (в адвекции воздушных масс).

Тёплые воздушные массы, притекающие в высокие широты, отдают там своё тепло, повышают температуру атмосферы; холодные массы, попадая в низкие широты, забирают путём теплопроводности избыточное тепло от земной поверхности, при этом снижается температура атмосферы. В результате в атмосфере устанавливается более равномерное распределение тепла по земному шару. Если бы температура воздуха распределялась только в соответствии с лучистым равновесием, то среднегодовая температура на полюсе была бы – 44 °С, а на экваторе + 39 °С; на самом деле – 22 °С и +26 °С. Путём адвекции в земной атмосфере из низких широт в высокие переносятся огромные количества тепла.

 







Дата добавления: 2015-10-01; просмотров: 1162. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия