Студопедия — СПОСОБЫ ПРЕДСТАВЛЕНИЯ МОДЕЛЕЙ ГЕОМЕТРИЧЕСКИХ ОБЪЕКТОВ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СПОСОБЫ ПРЕДСТАВЛЕНИЯ МОДЕЛЕЙ ГЕОМЕТРИЧЕСКИХ ОБЪЕКТОВ






В общем случае в любой геометрической модели можно выделить две составляющие ее части (уровни):

· набор структурных элементов. Например, в полигональной модели это вершины, ребра и грани;

· топология, т.е. собственно структура, определяющая способ взаимосвязи элементов.

Структурный элемент как геометрический объект, вообще говоря, можно представить одним из способов:
1) параметрически (функциональная зависимость координат от переменных параметров):

2 ) неявно:

где m – размерность пространства (1 – одномерное, 2 – двумерное, 3 – трехмерное);

n – размерность элемента (0 – нульмерный, определяет точку; 1 – одномерный, определяет линию; 2 – определяет поверхность);

- m-мерная вектор-функция, определяющая форму параметрического элемента;

- m-мерная вектор-функция, задающая пределы изменения параметров;

- m-мерная вектор-функция, определяющая неявное уравнение геометрического элемента;

- m-мерный нулевой вектор.

Как видно, неявное задание геометрического объекта более компактное. Тем не менее параметрическому заданию отдается предпочтение в силу его удобства для решения задач нахождения:

- точки, принадлежащей объекту;

- нормали к кривой или поверхности;

- осуществления мэппинга поверхности.

В зависимости от значений m и n сведем геометрические объекты для параметрического их представления в следующую таблицу.


Таблица 1

 

Классификация элементов геометрических объектов

m\n      
  точка прямой отрезок прямой -
  точка плоскости линия на плоскости область на плоскости
  точка в пространстве пространственная линия область в пространстве

Из таблицы видно, что m <= n. Будем ссылаться на данные элементы обозначением (m\n)-элемент. Например, (2\1) – это линия на плоскости.

Имея данные структурные элементы, можем конструировать из них различную топологию, выражающую отношения между структурными элементами, например, с помощью таблиц или с использованием теории множеств. Так ломаную можно представить двумя множествами:

V – множество вершин ((2\0)-элементов);

Е = {vi, vj}– множество ребер.

Рассмотрим распространенную классификацию существующих способов представления трехмерных геометрических объектов (моделей):

- простейшие способы;

- граничное задание;

- объемное задание.

К простейшим способам задания трехмерных объектов относятся точечное и проволочное (каркасное) представления. В точечном представлении объект задан совокупностью вершин, принадлежащих поверхности объекта V = {V1,…,Vn}.

Проволочная модель является расширением предыдущего способа. Объекты задаются совокупностью вершин и соединяющих их ребер (отрезков прямой или кривой):

V = {v1,…,vn}, Е = {vi, vj [fk(u)]},

где fk(u) – это (3\1)-элемент, используемый, если ребро не является отрезком прямой, соединяющей вершины vi, vj. Как правило, для одной модели fk является вектор-функцией одного и того же типа.

Основное преимущество этих способов - простота представления. Потому они применяются на промежуточных стадиях работы с геометрическим объектом: предварительная визуализация и как исходные модели для синтеза более сложных моделей.

Поверхностное (граничное) задание моделей. Поверхностное представление объекта подразумевает точное математическое описание. Исходя из вышеприведенной классификации существует два основных способа описания поверхности: явное параметрическое и в виде неявных функций. Общий вид параметрической поверхности следующий:

,

где для параметров u и v, как правило, определяют область определения либо прямоугольного (ua < u < ub, va < v < vb), либо треугольного (ua < u < ub, va < u + v < vb) вида.

Можно выделить два основных типа поверхностных параметрических моделей:

- полигональная модель, которая представлена набором плоских граней;

- патч-модель, или лоскутная модель. В данном случае гранями служат части поверхностей одного типа (билинейные, поверхности Кунса, бикубические поверхности, поверхности Безье, поверхности на основе B-сплайнов).

Поверхностное задание трехмерных объектов является наиболее распространенным, и для него сформировались следующие разновидности топологий:

1. Список вершин. В этой топологии грань выражается через вершины:

V = {vi } – вершины |V| = n;

F = {(vj1, vj2,…, vjk [, fj(u,v)]) } – грань (или патч fj), состоящая из k вершин (k >= 3).

2. Список ребер. Здесь грань выражена через ребра:

V = {vi } – вершины |V| = n;

Е = {ek = (vi, vj [fk(u)])} – ребро. fk – уравнение линии;

F = {(ej1, ej2,…,ejk [fj(u,v)])} – грань (или патч fj), состоящая из k ребер (k >= 3).

3. «Крылатое» представление. Эта модель является развитием модели, основанной на информации о ребрах. Отличие состоит в том, что в структуру, описывающую ребра, добавляется информация о взаимном расположении граней. Она включает:

V = {vi } – вершины |V| = n;

E = { ek = (vstart, vend, ncw, nccw, [fk(u)])} – ребро, где vstart – начало ребра, vend – конец ребра, ncw – следующее (предыдущее) ребро в той грани, где ek встречается в положительном направлении обхода вершин, nccw – следующее (предыдущее) ребро в другой грани (где ek встречается в отрицательном направлении);

F = { (first_edge, sign [fj(u,v)]) } – грань (или патч fj), где first_edge – первое ребро в цепочке представления грани, sign – знак (+/-), определяющий, в каком направлении встречается ребро first_edge в данной грани.

«Крылатое» представление является наиболее удобным для реализации важнейших алгоритмов над геометрическими объектами:

- проверка правильности задания;

- алгоритмы для полигональных моделей, связанные с обходом ребер (выделение плоских контуров, упрощение модели путем удаления граней и другие).

Кроме того, не более чем за линейное время можно восстановить любую другую топологию, следуя по цепочкам связей между элементами.

В объемном представлении базовыми являются (3\2)-элементы или неявно представленные примитивы. Наиболее известны:

- воксели;

- метаболы;

- сплошные конструктивы.

Основой воксельного представления служит так называемый воксель (или ячейка), представляющий собой кубическую область пространства. Трехмерный объект определяется как массив вокселей. Можно выделить следующие топологии воксельного объекта:

1) простейшая – набор одинаковых вокселей, аппроксимирующий область пространства, занимаемую объектом;

2) V = { ({L} x {M} x {N}, {1,0}) } – элементу трехмерного массива вокселей размером L x M x N ставится в соответствие его заполненность (принадлежность объекту);

3) октальное дерево – рекурсивное разбиение пространства на 8 частей. При этом устанавливается некоторый минимальный размер вокселя. Лист дерева помечается заполненным, если он полностью принадлежит объекту. Таким образом, топология представлена в виде дерева;

4) PM-октальные деревья – это гибрид октального дерева и полигональной модели для уменьшения погрешности аппроксимации при достижении минимального размера вокселя в рекурсивном разбиении пространства.

Воксельное представление является очень удобным для реализации пространственных алгоритмов и теоретико-множественных операций над объектами (объединение, вычитание, пересечение), но обладает рядом недостатков, которые ограничивают область его применения:

- низкая точность для представления для большинства

объектов;

- большой объем занимаемой памяти.

Метаболы – это шары различного радиуса (r), которые могут взаимодействовать в зависимости от близости и радиуса взаимодействия (R): Сфера = (координаты, радиус, вещество). Взаимодействие выражается через появление дополнительной «материи» между ними (см. рис. 5). Топология, как таковая, здесь отсутствует.

Рис. 5. Взаимодействие двух метаболов

При представлении объекта в виде сплошных конструктивов используют два набора:

- базовый набор примитивов (параллелепипед, сфера, конус, цилиндр, тор, призма, пирамида и т.п.), являющихся структурными элементами объекта;

- базовый набор теоретико-множественных операций: унарного аффинного преобразования (T) и бинарных операций вычитания (-), пересечения (*), объединения (+). Данный набор определяет топологию модели, которая реализуется в виде формулы теории множеств.

Например, если мы имеем три примитива A, B, C и формулу (A + T(B)) * C, то это означает, что мы объединяем объект А с трансформацией объекта В и пересекаем его с объектом С. Преимущество данного способа представления заключается в том, что таким образом можно относительно легко моделировать достаточно сложные объекты.







Дата добавления: 2015-09-04; просмотров: 1160. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия