Студопедия — Решение обратной задачи.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение обратной задачи.






2.1 Неразветвленная магнитная цепь (рис. 1.8)

Рис. 1.8
Задано значение МДС w×I, требуется определить магнитный поток Ф. Если известно, что магнитная цепь устройства в рабочих режимах не насыщена и можно считать магнитную проницаемость ферромагнитных участков , то, подсчитав магнитные сопротивления участков цепи можно определить поток Ф из закона Ома для магнитной цепи: . В общем же случае принимается следующий порядок решения:

2.1.1. Задаются рядом значений потока Ф (Ф’, Ф’’ и т.д.), по которым каждый раз определяется МДС wI (wI’, wI’’ и т.д.), т.е. несколько раз решается прямая задача.

2.1.2. Строится вспомогательная магнитная характеристика Ф(wI) рис. 1.13.

2.1.3. Используя построенную характеристику, по заданному значению МДС wIзадан . определяем искомое значение потока Фиск.

Примечание: учитывая, что для расчета нужна только часть характеристики в окрестности Фиск, рекомендуется вначале найти приближенное значение Фиск с помощью уравнения (т. к. Н0 >> H1 , Н2 и Н3),

из которого определяется напряженность поля в зазоре Н0 и далее – В0 = m0S0 и приближенное значение потока Фиск0S0, и далее выполняются 2.1.1 – 2.1.3 пункты расчета.

2.2. Разветвленная несимметричная магнитная цепь (рис. 1.14).

По заданному значению МДС w×I определить магнитные потоки Ф1 , Ф3, Ф2.

Магнитные сопротивления отдельных участков магнитопровода в общем случае нелинейные из–за нелинейной зависимости между магнитными потоками и током намагничивающей обмотки Ф(I).

Рис. 1.14
При решении задачи удобнее использовать схему замещения (рис. 1.15) магнитной цепи (рис. 1.14), подобную схеме нелинейной электрической цепи постоянного тока с той разницей, что ЭДС заменена на МДС w×I, токи в ветвях электрической цепи – потоками Ф1, Ф2, Ф3 в ветвях магнитной цепи, нелинейные сопротивления R(I) магнитными сопротивлениями RM(Ф).

Выделим ветвь с МДСw×I в активный двухполюсник. Второй двухполюсник, в составе которого две параллельные ветви с нелинейными магнитными сопротивлениями RM1 и RM3 – пассивный (рис 1.16).

Задача решается графоаналитическим методом.

Рис. 1.15
Вебер-амперная характеристика активного двухполюсника строится в соответствии с уравнением второго закона Кирхгофа для магнитной цепи:

1.13

Рис. 1.16
Для ее построения задаемся рядом значений потока Ф2, определяем ряд значений индукции , и по кривой намагничивания каждый раз находим напряженность магнитного поля Н2 ; далее по уравнению 1.13 подсчитываем соответствующие значения магнитных напряжений UabM и строим вебер-амперную характеристику активного двухполюсника Ф2(UabM) рис. 1.17.


Чтобы получить вебер-амперную характеристику пассивного двухполюсника, нужно сначала построить характеристики Ф1(UabM) и Ф3(UabM) по описанной выше методике с использованием зависимостей:

Так как ветви с потоками Ф1, Ф3 соединены между собой параллельно и , то для построения характеристики пассивного двухполюсника Ф1(UabM)+ Ф3(UabM) складываем ординаты характеристик ветвей при одних и тех же значениях UabM.

Поскольку двухполюсники соединены последовательно (рис. 1.16), то точка пересечения их вебер – амперных характеристик определит общий для обоих магнитный поток Ф 2 и магнитное напряжение UabM.

Располагая значением UabM и вебер – амперными характеристиками Ф1(UabM) и Ф3(UabM) определяем по рис. 1.17 значения потоков Ф1 и Ф3.







Дата добавления: 2015-09-04; просмотров: 425. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия