Студопедия — Окситенки
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Окситенки






2.13. Окситенки представляют собой комбинированные сооружения, в конструкции которых предусмотрены зоны окисления и илоотделения, сообщающиеся между собой с помощью циркуляционных окон и щелей. Зона окисления оборудуется механическим аэратором, системой автоматической подпитки кислорода и стабилизации кислородного режима (рис. 16). Окситенки работают в режиме реактора-смесителя. Они могут применяться для полной и неполной очистки городских и производственных сточных вод.

Рис. 16. Схема окситенка

1 - резервуар; 2 - полупогружная перегородка; 3 - корпус зоны реакции, 4 - кислородопровод. 5 - механический аэратор; 6 - стояк сброса газа; 7 - привод илоскреба, 8 - кислородный датчик; 9 - зона илоотделения; 10 - решетка илоскреба; 11 - водослив водосборного лотка; 12 - донная циркуляционная щель; 13 - подводящий дюкер; 14 - циркуляционные окна

Институт Союзводоканалпроект разработал проекты окситенков диаметром 10, 22 и 30 м, в которых зоны окисления и илоотделения равны между собой по объему.

2.14. При расчете окситенков определяются необходимые объемы зоны окисления и илоотделения, размеры турбины аэратора частота ее вращения и мощность привода при заданной эффективности использования кислорода.

2.15. Исходные данные для расчета окситенков аналогичны тем, которые необходимы при применении аэротенков. Для примера рассмотрим случай, при котором расход сточных вод qW = 1667 м3/ч; БПКполн исходной воды Len = 400 мг/л: БПКполн очищенной воды Lех = 15 мг/л.

Сточная вода представляет собой смесь промышленной и бытовой и по составу близка к городской, поэтому кинетические константы могут быть взяты из табл. 40 СНиП 2.04.03-85 = 85 мг БПКдолн/(г×ч); Kl = 33 мг/л; K0 = 0,625 мг/л; = 0,07 л/г.

Доза ила и концентрация кислорода определяются в результате технико-экономических расчетов. Для окситенков эти параметры находятся в следующих пределах: ai = 5 - 12 г/л, Сo = 6 - 12 мг/л.

В данном случае в первом приближениипринято ai = 6 г/л, Сo = 8 мг/л.

В начале определяется удельная скорость окисления по формуле (49) СНиП 2.04.03-85

= =18,25 мг . БПКполн/(г×ч).

Период пребывания в зоне реакции определяется по формуле (48) СНиП 2.04.03-85

taim = = 5,02 ч.

Суммарный объем зон реакции окситенков, м3.

WO = qwtaim = 1667 . 5,02 = 8368 м3.

Приняв окситенки DО = 22 м, глубиной НО = 4,5 м, с общим объемом, равным:

WO1 = 0,785 НО . = 0,785×222×4,5 = 1708 м3

получим объем зоны реакции

Wa1 = WO1/ 2 = = 854 м3

Далее рассчитаем диаметр зоны реакциипо формуле, м:

. (43)

Затем количество окситенков

nO = WO/ Wa1 = 8368/854 = 9,718 ед.

Согласно расчетам принимаем nO = 10 ед.

2.16. Для определения седиментационой характеристики ила по формуле (53) СНиП 2.04.03-85 рассчитываем нагрузку на ил

qi = (400 - 15) 24/6 ×;5,02(1 - 0,3) = 438 мг . БПКполн/(г×сут).

По табл. 41 СНиП 2.04.03-85 при qi = 438 величина илового индекса Ji = 85 см3/г. С учетом снижения его за счет кислорода Ji = 85/1,4 = 60,7 см3/г.

По табл. 45 СНиП 2.04.03-85 в зависимости от величины параметра (aiJi) определяем допустимую гидравлическую нагрузку на илоотделитель; для aiJi = 6 . 60,7 = 364, при котором qms = 1,4 м3/(м2×ч).

Необходимая площадь илоотделителей окситенков

Fтs = qw/ qms = = 1140 м2.

Фактическая площадь илоотделителей

FOi = WO1 /2 HO = 1708/(2 . 4,5) = 1900м2

что значительно превышает необходимую величину, поэтому дозу ила можно несколько увеличить.

2.17. Во втором приближении принимается доза ила ai = 8 г/л, остальные параметры остаются неизменными и расчет повторяется в прежней последовательности. По формуле (49) СНиП 2.04.03-85

= 16,62 мг /(г×ч).

По формуле. (48) СНиП 2.04.03-85

taim = (400-15)/[8(1-0,3)16,62] = 4,13 ч.

Объем зон реакции окситенков Wa = 1667×4,13 = 6895 м3. Количество окситенков nO = 6895/854 = 8,07 ед. Можно принять nO = 8 ед. По формуле (53) СНиП 2.04.03-85

qi = (400-15) . 24/[8 . 4,13 (1-0,3)] = 399,5 мг/(г×сут)/

По табл. 41 СНиП 2.04.03-85 при qi = 399,5 мг/(г×сут), Ji = 80 см3/г, с учетом влияния кислорода Ji = 80/1,4 = 57 см3/г, величина aiJi = 8 . 57 = 456, при котором по табл.45 СНиП 2.04.03-85 qms = 1 м3/(м2×ч)

Необходимая площадь илоотделителей окситенков Fтs = 1667/1 = 1667 м2

Фактическая площадь илоотделителей тs = 6895/4,5 = 1532м2,что соответствует необходимой величине.

2.18. Производительность аэратора по кислороду Qma, кг/ч, при использовании технологического 95 %-ного кислорода определяется по формуле

, (44)

где Са - концентрация насыщения воды кислородом, мг/л, в стандартных условиях по формуле (38) (в данном случае Сa = 10 мг/л); К т и K 3 - коэффициенты, учитывающие температуру и состав сточных вод, определяются по п. 6.157 СНиП 2.04.03-85.

Например, при температуре воды 12 °С К т = 1+0,02(12 - 20) = 0,84. Для смеси промышленных и городских вод K 3 = 0,7. Коэффициент использования кислорода в окситенке принимается в пределах = 0,85-0,95.

Концентрация растворенного кислорода в зоне реакции определяется технико-экономическим расчетом. Для окситенков оптимальные значения Со = 6-12 мг/л. В данном случае Со = 8 мг/л.

Скорость потребления кислорода рассчитывается с учетом БПК исходной и очищенной воды и производительность одного окситенка по формуле, кг/ч:

. (45)

Для данного случая

= (400 - 15) 1667/1000×8 = 80кг/ч.

Приняв = 0,9; Co = 8 мг/л,

Qma = 10×80/1000×0,84×0,7[0,174(1-0,9)/0,9-8/1000] = 119 кг/ч.

Исходя из конструктивных соображений, принимается диаметр турбины механического аэратора dа = 2м. Параметры механических аэраторов приведены в табл. 13.

Таблица 13

Диаметр турбин аэратора, м Количество лопаток, шт. Длина лопатки, мм Высота лопатки, мм Частота вращения, мин-1 Производительность по кислороду, кг/ч Мощность (нетто), кВт
0,5         3,33 1,2
0,7         7,08 2,4
1,0         9,58 3,4
1,5         22,91 7,5
          33,33 11,8
2,5         52,08 18,1
          77,5 26,5
3,5         108,33 38,5
          145,83 52,5
4,5         204,16  

Для аэраторас da = 2 м, работающего на воздухе, производительность по кислороду составляет Qm = 33,5 кг/ч, мощность (нетто) Nm = 11,8 кВт, частота вращения nm = 38 мин-1.

Поскольку Qm аэратора недостаточна, следует повысить скорость его вращения и соответственно увеличить мощность привода.

Необходимая частота вращения nO, мин-1, определяется по формуле

nO = nm , (46)

т.е.

nO = = 72 мин-1.

Мощность (нетто) на валу NO, кВт, рассчитывается по формуле

NO = , (47)

для рассматриваемого примера

NO = 11,8 . 722/382 = 42,3.

Мощность привода аэратора (брутто) при его КПД = 0,7

NOb = No / = 42,3/0,7 = 60,5 кВт.

Интенсивность перемешивания механического аэратора оценивается по величине донной скорости J о, м/с, в наиболее удаленной точке зоны его действия, величина которой должна быть не менее 0,2 м/с и рассчитывается по формуле

,

где Ha и Вa - глубина и ширина зоны реактора.

Для рассматриваемого примера при Вa = Dr = 15,5 м; На = 4,5 м, донная скорость будет равна:

Jо = = 0,7 м/с,

что значительно выше требуемой величины, и, следовательно, перемешивание будет обеспечено.

2.19. Расход кислорода определяется с учетом расхода сточных вод, БПКполн исходной и очищенной воды и эффективности использования кислорода. Весовой расход кислорода рассчитывается по формуле

.

Для рассматриваемого примера

= 713 кг/ч.

Объемный расход

o = Qo / ,

где плотность 1 м3 кислорода при нормальном давлении = 1,43 кг/м3. Для условий примера o = 713/1,43 = 498,7 м3/ч.

2.20. При подборе оборудования можно использовать технико-экономические показатели установок разделения воздуха (по данным Гипрокислорода) которые приведены в табл. 14.

2.21. Применение окситенков экономически целесообразно при получении кислорода по себестоимости от действующих кислородных цехов предприятий азотной, нефтехимической, коксохимической и других отраслей промышленности, а также при строительстве собственных кислородных установок в составе очистных сооружений.

Экономический эффект от применения окситенков с собственными кислородными установками по сравнению с аэротенками при очистке городских сточных вод возрастает с повышением производительности очистных сооружений.

Таблица 14

Марка установки Количество блоков в установке, шт. Производительность по кислороду, м3 Стоимость цеха в тыс. руб. Расход электроэнергии тыс. кВт.ч Годовые эксплуатационные затраты, тыс. руб. Себестоимость 1 м3 кислорода, коп.
К-0,15     134,2   73,38 5,5
К-0,4         162,23 4,79
К-0,4     505,2 926,2 308,26 4,5
К-1,4     632,15   306,33 2,85
К-1,4     1164,45 14535,4   2,53
К-5     1604,2 24823,5 848,18  

Примечание. Производительность и себестоимость даны при нормальном давлении кислорода при температуре 20 °С. Содержание кислорода не ниже 99,5 %.

Ориентировочные величины экономического эффекта для этих условий приведены в табл. 15.

Таблица 15

Производительность, сооружения, тыс. м3/сут            
Экономический эффект, тыс. руб.   126,7 208,5 381,2   970,1






Дата добавления: 2015-09-04; просмотров: 963. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия