Студопедия — Дифференциальные уравнения пограничного слоя.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальные уравнения пограничного слоя.






При обтекании твердой поверхности жидкостью (или газом) с большими числами Re влияние вязкости проявляется в пределах тонкого пограничного слоя δ (рис. 7.1.) Вне этого слоя во многих задачах среда может полагаться невязкой и ее течение описывается системой уравнений Эйлера. Л. Прандтль установил, что в пределах тонкого пограничного слоя уравнения вязкой среды могут быть существенно упрощены в предположении о сопоставимости сил вязкости и инерции. Если между поверхностью обтекаемого тела и жидкостью происходит тепло и массообмен то вблизи твердой стенки возникают тепловой и диффузионный пограничные слои толщиной δт и δс. Скорость, температура и концентрация примеси принимают у стенки значения Uст, Тст и Сст и асимптотически приближаются к значениям U , Т , С во внешнем потоке Физические условия «прилипания» жидкости на поверхности соответствует равенству нулю скорости потока Uст = 0. За толщины пограничных слоев δ, δт, δс обычно принимаются расстояния от стенки по нормали, на которых скорости, температуры и концентрации примеси отличаются на 1% от соответствующих значений во внешнем потоке.

Рис. 7.1. Схема динамического, теплового и концентрационного пограничных слоев на криволинейной поверхности

4.10.1. Система уравнений вязкой жидкости рассматривается при следующих допущениях: течение двумерное, среда однофазная, внешние объемные силы отсутствуют. При этих допущениях система уравнений Навье-Стокса имеет вид:

- уравнение неразрывности

(7.1)

1 1∙1

- уравнение движения в проекции на ось х

(7.2)

1 1 δ δ2 δ2

- уравнение движения в проекции на ось у

(7.3)

1 1 δ δ2 δ2

- уравнение баланса энергии

(7.4)

1 1 δ 1 1∙1 δ δ2 δ2 δ2

где Ф – диссипативная функция

,

где под каждым слагаемым записаны порядки величин, которые необходимо оценить.

Будем считать, что толщины δ и δт имеют порядок δ значительно меньший по сравнению с расстоянием х. Порядок х, а, Uх, Т, ρ, р – примем за 1. Тогда δ << х. Оценим порядки слагаемых в уравнениях (7.1) – (7.4) и разместим эти порядки под соответствующими величинами. В уравнении неразрывности слагаемое ~ то есть имеет порядок 1 и, следовательно, ~1 и т.к. у ~ δ, то Uу ~ δ. Производные ~ 1 и ~ 1, т.е. имеют порядок 1, а производные имеют порядки и соответственно. Полагая, что силы вязкости и инерции имеют в пределах пограничного слоя одинаковый порядок получим из (7.2) 1 ~ и μ ~ . Тогда число ~ . Это означает, что условием образования тонкого динамического пограничного слоя при обтекании поверхности является ~ , то есть большая по сравнению с 1 величина чисел . В уравнении энергии (7.4) полагаем, что тепловые потоки из-за теплопроводности имеют такой же порядок что и конвективный тепловой поток. Тогда слагаемое имеет порядок 1 и, следовательно, λ имеет порядок δ2.

Таким образом, оставляя в уравнениях слагаемые, имеющие большие порядки, а именно в (7.2) порядка 1, в (7.3) порядка и в (7.4) порядка 1 и пренебрегая слагаемыми меньшего порядка систему сопряженных дифференциальных уравнений сжимаемых динамического и теплового пограничных слоев:

- уравнение неразрывности

(7.5)

- уравнение движения в проекции на ось х

(7.6)

- уравнение движения в проекции на ось у

(7.7)

- уравнение баланса энергии

(7.8)

Замыкающим уравнением является уравнение состояния

ρ = ρ (р,Т) (7.9)

Система уравнений (7.5) – (7.9) содержащее 5 неизвестных ρ (х, у), Ux (х, у), Uy (х, у), р (х, у), Т (х, у) является замкнутой при известных μ(т), λ(т), Ср(т) и относится к системам уравнений параболического типа.

Граничные условия в задачах расчета пограничных слоев задаются в следующем виде:

- в сечении при входе на рассматриваемый участок пограничного слоя задаются профили продольной скорости и температуры

при х = 0, Ux = Ux0(y), Т =Т0(у), а также профиль поперечной скорости у = Uу0(y), удовлетворяющий уравнению неразрывности.

- на твердой стенке

при у = 0, Ux = Uxст(х), Uу = Uуст(х), Т =Тст(х), в частном случае условий «прилипания» жидкости на стенке Uxст = Uуст = 0

- на внешней границе пограничного слоя

у→ ∞ (у >δ, у >δт), р = р(х), Т = Т(х)

Скорость потока на внешней границе пограничного слоя находится из уравнения Бернулли для газа

, (7.10)

где К – показатель адиабаты газа. Система уравнений (7.5) – (7.9) с выписанными граничными условиями решается численно стандартным методом конечных разностей, методом контрольных объемов и другими.

Для несжимаемой жидкости плотность ρ = ρ0 = соnst и система уравнений пограничного слоя (7.4) – (7.8) упрощается:

(7.11)

- уравнение движения в проекции на ось х

(7.12)

- уравнение движения в проекции на ось у

; (7.13)

- уравнение энергии

(7.14)

Для калорически совершенного (идеального) газа уравнение состояния

(7.15)

и удельная энтальпия i равна

i = CpT

Полагая удельную массовую изобарную теплоемкость Ср постоянной, умножая (7.6) и складывая почленно результат с (7.8) получим уравнение энергии в форме Широкова

(7.16)

где - число Прандтля - температура адиабатического λ по скорости Ux.

 







Дата добавления: 2015-08-12; просмотров: 1415. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия