Студопедия — Шаг девятый: использование отрицательной энергии сжатых звезд
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Шаг девятый: использование отрицательной энергии сжатых звезд






В пятой главе я упоминал о том, что лазерные лучи могут создавать
«сжатые состояния», а их можно использовать для генерирования
отрицательной энергии, которая, в свою очередь, может быть при-
менена для открытия и стабилизации порталов. Когда мощный лазер-
ный импульс ударяет по особому оптическому материалу, вследствие
удара создаются пары фотонов. Эти фотоны попеременно то усили-
вают, то снижают квантовые флуктуации вакуума, выделяя импульсы
как положительной, так и отрицательной энергии. Сумма двух этих
энергетических импульсов всегда сводится к положительной энер-
гии, то есть мы не нарушаем известных законов физики.

В 1978 году Лоуренс Форд из университета Тафта вывел и доказал
три закона, которым должна подчиняться такая отрицательная энер-
гия. С момента своего появления и по сей день эти законы остаются
предметом активных исследований. Во-первых, Форд обнаружил,
что количество энергии в импульсе обратно пропорционально его
пространственной и временной величине — то есть чем сильнее им-
пульс отрицательной энергии, тем меньше он длится. Поэтому если
при помощи лазера мы создадим сильную вспышку отрицательной
энергии для того, чтобы открыть портал, он может оставаться откры-


тым в течение лишь очень короткого времени. Во-вторых, за отрица-
тельным импульсом всегда следует импульс положительной энергии
большей силы (то есть сумма все равно будет положительной).
В-третьих, чем дольше интервал между этими двумя импульсами, тем
большим окажется положительный импульс.

Руководствуясь этими общими законами, можно рассчитать усло-
вия, при которых лазер или пластины Казимира смогут генерировать
отрицательную энергию. Во-первых, можно было бы попытаться от-
делить импульс отрицательной энергии от последующего импульса
положительной энергии путем свечения лазерным лучом в коробку, а
затем немедленного закрытия крышки после прохождения в нее им-
пульса отрицательной энергии. В результате в коробку попадет толь-
ко импульс отрицательной энергии. В принципе, таким путем можно
получить колоссальные количества отрицательной энергии, за кото-
рыми последуют еще большие импульсы положительной энергии (но
их не пустит в коробку закрытая крышка). Интервал между двумя им-
пульсами может быть довольно долгим, поскольку энергия положи-
тельного импульса высока. Теоретически кажется, что это идеальный
способ сгенерировать неограниченные количества отрицательной
энергии, необходимые для машины времени или портала.
К несчастью, есть одна загвоздка. Сам акт закрытия крышки созда-
ет второй импульс положительной энергии внутри коробки. Если не
принять чрезвычайных мер предосторожности, импульс отрицатель-
ной энергии внутри коробки сотрется. Этот вопрос — отделение
мощного импульса отрицательной энергии от последующего им-
пульса положительной энергии таким образом, чтобы не уничтожил-
ся импульс отрицательной энергии, — останется технологической
Проблемой для высокоразвитой цивилизации будущего.
Эти три закона могут быть применены для эффекта Казимира.
Если мы хотим создать портал метром в диаметре, то необходимо
располагать отрицательной энергией, сконцентрированной в кольце
размером не более 1022 метра (миллионная часть протона). И снова
лишь чрезвычайно высокоразвитая цивилизация может оказаться
способной создать технологию, необходимую для управления та-
ними невероятно малыми расстояниями или невероятно малыми
интервалами времени.


Шаг десятый:







Дата добавления: 2015-08-12; просмотров: 362. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия