Студопедия — Космическая музыка
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Космическая музыка






Эйнштейн однажды сказал, что если теория не представляет такой
физической картины, которая понятна даже ребенку, то она, скорее
всего, бесполезна. К счастью, за струнной теорией стоит четкая фи-
зическая картина — картина, основанная на музыке.

Согласно струнной теории, если бы у нас был сверхмощный
микроскоп и мы могли вглядеться в сердце электрона, то мы бы уви-
дели вовсе не точечную частицу, а вибрирующую струну. (Струна
чрезвычайно маленькая — около длины Планка, которая составляет
Ю-33 см, — в миллиарды миллиардов раз меньше протона, а потому
все субатомные частицы выглядят как точки.) Если бы мы задели
эту струну, то характер вибрации изменился бы — электрон мог
бы превратиться в нейтрино. Заденьте струну снова — и он, воз-
можно, превратится в кварк. В сущности, если задеть струну доста-
точно сильно, то она могла бы превратиться в любую из известных
субатомных частиц. Таким образом, струнная теория может легко
объяснить, почему существует так много субатомных частиц. Они
представляют собой не что иное, как «ноты», которые можно сы-
грать на суперструне. Для аналогии, на скрипичной струне ноты
ля, си или до-диез не являются основными. Просто, играя на струне
различным способом, мы можем получить все ноты музыкальной
гаммы. Например, си-бемоль является не более основной, чем соль.
Все они представляют собой лишь ноты, которые можно сыграть на
скрипичной струне. Подобным образом, ни кварки, ни электроны не
являются основными частицами — основой является сама струна.
В сущности, все субчастицы Вселенной можно рассматривать в ка-
честве различных вибраций струны. «Гармонией» струны являются
законы физики.

Струны могут взаимодействовать путем расщепления и вос-
соединения, создавая таким образом взаимодействия, которые мы
наблюдаем в атомах между электронами и протонами. В общем, с по-
мощью струнной теории мы можем воспроизвести все законы атом-
ной и ядерной физики. «Мелодии», которые могут быть сыграны
на струнах, соотносятся с законами химии. Всю Вселенную теперь
можно рассматривать как необъятную струнную симфонию.


Струнная теория не только дает объяснение частиц квантовой
теории как музыкальных нот Вселенной, она также объясняет тео-
рию относительности Эйнштейна: самая низкая вибрация струны,
частица со спином «двойка» и нулевой массой, может интерпре-
тироваться как гравитон — частица или квант гравитации. Если мы
подсчитаем взаимодействия этих гравитонов, то в точности получим
старую добрую теорию гравитации Эйнштейна в квантовом виде,
Двигаясь, расщепляясь и изменяя форму, струна налагает огромные
ограничения на пространство-время. При анализе этих ограничений
мы опять-таки приходим к старой доброй общей теории относитель-
ности Эйнштейна. Таким образом, струнная теория четко объясняет
теорию Эйнштейна без ненужных дополнительных усилий. Эдвард
Виттен сказал, что если бы Эйнштейн не открыл теорию относитель-
ности, то его теория была бы открыта как побочный продукт струн-
ной теории. В каком-то смысле, общая теория относительности
является к ней бесплатным приложением.

Прелесть струнной теории состоит в том, что ее можно уподо-
бить музыке. Музыка дает нам метафору, с помощью которой можно
понять природу Вселенной как на субатомном, так и на космическом
уровне. Как когда-то написал великий скрипач Иегуди Менухин,
«Музыка создает порядок из хаоса; ибо ритм придает единодушие
разобщенности; мелодия придает связность разрозненности; а гар-
мония придает совместимость несовместимому».

Эйнштейн писал, что его поиски единой теории поля в конечном
счете позволят ему «узреть замысел Божий». Если струнная теория
верна, то мы увидим, что замысел Бога — это космическая музыка,
резонирующая во всех десяти измерениях гиперпространства.
Готфрид Лейбниц однажды сказал: «Музыка — это скрытые ариф-
метические упражнения души, которая не ведает о том, что занима-
ется вычислениями».

Исторически связь между музыкой и наукой установилась в V веке
до н. э., когда греки-пифагорейцы открыли законы гармонии и свели
их к математике. Они обнаружили, что высота тона задетой струны
лиры соотносится с ее длиной. Если длину струны лиры увеличи-
вали вдвое, то тон становился на октаву ниже. Если длину струны
уменьшали до двух третей, то тон менялся на квинту. Исходя из этих


данных, законы музыкальной гармонии могли быть сведены к точным
отношениям между числами. Неудивительно, что девизом пифаго-
рейцев была следующая фраза: «Всё есть числа». Изначально они
были так довольны полученным результатом, что попытались при-
менить выведенные законы гармонии ко всей Вселенной. Однако все
их усилия были напрасны, поскольку такая задача отличалась чрезвы-
чайной сложностью. И все же, работая со струнной теорией, физики
в каком-то смысле возвращаются к мечте пифагорейцев.

Комментируя эту историческую связь, Джейми Джеймс однажды
сказал: «Музыка и наука [когда-то] были настолько тесно связаны,
что любого, кто предположил бы существование какого-либо корен-
ного различия между ними, посчитали бы невеждой, [однако сегодня]
любой, предположивший, что у них есть нечто общее, рискует по-
казаться мещанином одной стороне и дилетантом — второй; и, что
самое неприятное, обе группы сочтут его человеком, популяризиру-
ющим их идеи».

 







Дата добавления: 2015-08-12; просмотров: 384. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия