Студопедия — Барометрическая формула
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Барометрическая формула






До сих пор мы рассматривали идеальный газ в состоянии теплового равновесия как совокупность реальных частиц испытывающих столкновения и подчиняющихся законам динамики системы частиц. Перейдём к учёту воздействий на идеальный газ внешних полей. Будем рассматривать их в одночастичном приближении. В этом приближении идеальный газ может быть представлен совокупностью свободных «квазичастиц» индивидуального типа, каждая из которых движется независимо с эффективной скоростью, вообще не участвуя в каких-либо столкновениях. При таком подходе включение внешнего поля сопровождается движением каждой из квазичастиц в этом поле. Задача состоит в том, чтобы выяснить, как воздействие внешних полей сказывается на характеристиках газа в целом.

Поскольку взаимодействие в газах не является сильным и можно воспользоваться одночастичным приближением, дополним его приближением «среднего поля». Согласно этому приближению взаимодействие частиц можно учесть, перейдя от совокупности взаимодействующих «квазичастиц» к совокупности независимых «квазичастиц», движущихся в некоем внешнем «среднем поле». Учёт такого взаимодействия также оказывает воздействие на свойства газа в целом.

Итак, мы помещаем газ в потенциальное внешнее поле. Для простоты пусть это будет поле тяготения вблизи поверхности Земли. Его можно считать однородным. Действительно, по закону тяготения Ньютона тела притягиваются к Земле с силой . Здесь G – постоянная всемирного тяготения, равная 6,67×10–11 (Н×м2) / кг2; R и МЗ – соответственно, радиус и масса Земли; m – масса элемента газа. На высоте h от поверхности Земли выражение силы принимает вид: . Найдём разность силы тяжести на поверхности Земли и на высоте h от поверхности Земли, т.е. . Набравшись терпения и проведя преобразования, читатель получит аналитическое выражение вида: . Возводя в квадрат в числителе второго множителя, и проведя ещё раз преобразования, получим выражение вида; . Проанализируем выражение в скобках. Если учтём, что атмосферный слой простирается до 25÷30 км, а радиус Земли R порядка 6400 км, немедленно получаем – второе слагаемое в скобках ~ 2×105. Читатель может самостоятельно убедиться в том, что первое слагаемое в скобках не превышает 1×102. Таким образом, разность силы тяжести на высоте 30 км составляет порядка одной сотой от силы тяжести на поверхности Земли. Если высота h составляет десятки или сотни метров, то разность силы тяжести будет ещё меньше, что даёт основания считать поле тяготения вблизи поверхности Земли однородным. Однако теперь закон Паскаля о постоянстве давления для выделенного элементарного объёма газа D V, помещённого в потенциальное внешнее поле Земли, справедлив только в направлениях, где поле Земли отсутствует (рис. 5.2.).

Рис. 5.2
Действительно, на каждую частицу выделенного объёма газа D V в направлении оси Z теперь действует сила тяготения , направленная в противоположную оси Z
Z
сторону (см. рис. 5.2.); здесь – масса частицы. Учитывая, что на элемент объёма газа D V действует сила m × g = – × n ×D V × g, где m – масса объёма газа D V, выраженная через концентрацию частиц n и объём выделенного элемента газа , условие равновесия сил, действующих на элемент D V объёма газа в направлении оси Z, примет вид: – m о× n ×D V × g = , здесь – давление окружающего газа на нижний уровень S выделенного объёма газа D V (см. рис. 5.2.); – давление окружающего газа на верхний уровень выделенного объёма D V; – площадь основания элемента D V объёма; знак «–» обусловлен тем, что направление силы тяготения противоположно направлению оси Z (см. рис.5.2.), тогда как разность давлений окружающего газа на верхнюю и нижнюю грани объёма D V создаёт силу давления , направленную в положительном направлении оси Z, т.е. вверх.

Почему сила давления окружающего газа на выделенный элемент объёма D V направлена вверх? На с. 53 показано, ; отсюда следует, только два параметра определяют давление газа – концентрация молекул газа n и его температура Т. Ранее, на с. 54, показано, температура Т среды определяет энергию поступательного движения молекул газа. Наш жизненный опыт подтверждает, численное значение температуры вблизи поверхности Земли в данном месте относительно постоянно по высоте. Естественно предположить, величина давления р «чувствительна» к концентрации молекул газа n в единице объёма. Если учесть рассуждения данного абзаца, условие равновесия сил на элемент объёма газа D V принимает вид: – m о× n ×D V × g = = . Так как D z мало, следует ожидать, разность концентраций частиц по высоте (рис. 5.2.) с координатами z и z+Dz может быть записана . Аналитическая запись условия равновесия сил принимает конечный вид: . Читатель, рассуждая, должен пояснить себе, при каком соотношении числовых значений сила давления окружающего газа на выделенный элемент объёма D V совпадает с направлением оси Z (подсказку можно усмотреть на рис.5.2.).

Проанализируем условие равновесия сил на выделенный элемент объёма газа : ; здесь – масса квазичастицы газа; k – постоянная Больцмана, численное значение которой приведено на с. 53; S –площадь выделенного элемента объёма газа , находящегося во внешнем силовом поле; Т и g, соответственно, характеристики температурного поля среды и внешнего силового поля. Если учесть, что , то после несложных преобразований уравнения равновесия читатель самостоятельно может получить формулу вида: . Из неё следует, скорость изменения концентрации газа с высотой определяется концентрацией частиц в единице объёма n и отношением между силовым и потенциальным полем. Переходя к бесконечно малым величинам , формула принимает вид: ; получили уравнение в дифференциальной форме. Данное уравнение позволяет найти зависимость концентрации частиц в атмосфере у поверхности Земли в условиях теплового равновесия. Действительно, разделяя переменные и проводя интегрирование , получаем уравнение вида: ; здесь n и z переменные, символы у интегралов сверху и снизу показывают, соответственно, максимальное и минимальное значение, принимаемое переменными. Подставляя эти значения в уравнение, получаем аналитическое выражение вида: ; если учесть, что разность логарифмов равна логарифму частного, выражение запишется: . Наконец, проведя последнюю математическую операцию – потенцирование, получаем формулу, характеризующую зависимость концентрации частиц в атмосфере у поверхности Земли в условиях теплового равновесия: . Из неё следует – «борьба» между внешним потенциальным полем и тепловым определяет распределение частиц в атмосфере; чем меньше потенциальная энергия молекул, тем больше их плотность.

Учитывая, что закон Клапейрона-Менделеева справедлив для любой точки формула распределения концентрации частиц может быть переписана для давления газа в атмосфере у поверхности Земли. Действительно, . Полученная формула называется барометрической.

Повторяя те же рассуждения, формула распределения концентрации частиц во внешнем поле может быть обобщена на произвольное потенциальное поле; в дальнейшем нам с этим придётся встретиться. Формулу для концентрации частиц во внешнем поле в условиях теплового равновесия принято называть формулой Больцмана: .

Завершая экскурс в раздел «Тепловые явления. Термодинамический и статистический методы исследования», перечислим его ключевые понятия: термодинамическая система, макро- и микропараметры системы, состояние системы, «квазичастица» индивидуального типа, идеальный газ, основное уравнение кинетической теории газов; тепловое равновесие, понятие температуры (эмпирической), степень свободы молекулы, равнораспределение энергии по степеням свободы; идеальный газ во внешнем поле, барометрическая формула, распределение Больцмана.

 







Дата добавления: 2015-09-18; просмотров: 652. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия