Студопедия — Контрольной работы №5
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Контрольной работы №5






 

Задание 5.1. Найти общее решение:

.

Преобразуем данное уравнение:

.

Это уравнение с разделяющимися переменными. Разделим переменные

Интегрируем обе части неравенства:

Последнее равенство является общим интегралом исходного уравнения.

 

Задание 5.2. Найти общее решение:

.

Так как функции и — однородные второго измерения

то данное уравнение — однородное.

Сделаем замену: где — новая неизвестная функция.

.

Тогда:

, .

Далее имеем:

, .

Это уравнение с разделяющимися переменными. Решаем его:

.

В последнее выражение вместо подставим значение .

Получим общий интеграл:

Выразив отсюда , найдём общее решение исходного уравнения:

.

Задание 5.3. Найти общее решение:

.

Это линейное неоднородное уравнение. Рассмотрим однородное:

.

Решим его:

, ,

По методу Лагранжа общее решение линейного неоднородного уравнения ищем в виде ,где — неизвестная функция.

Подставим это выражение в исходное уравнение:

.

Получим простейшее дифференциальное уравнение 1-ого порядка:

, , .

Окончательно, общее решение нашего уравнения имеет вид:

.

Задание 5.4. Найти общее решение:

Введём обозначения:

Так как ; , а следовательно , то уравнение является уравнением в полных дифференциалах, а его левая часть есть полный дифференциал , причем

Далее:

;

т.е.

, , а, .

Общий интеграл исходного уравнения имеет вид U (x, y)=C или

.

 

Задание 5.5. Найти общее решение:

Это уравнение 2-ого порядка, не содержащее искомой функции . Оно допускает понижение порядка уравнения заменой , .

После замены исходное уравнение превращается в однородное уравнение первого порядка:

.

Делаем подстановку:

 

, .

Тогда

.

 

Разделяем переменные:

, , ;

. .

Так как , то

Находим:

.

Общее решение уравнения имеет вид:

.

 

Задание 5.6. Найти общее решение:

Это уравнение второго порядка, не содержащее независимой переменной . Оно допускает понижение порядка уравнения заменой:

,

После замены, исходное уравнение преобразуется в уравнение с разделяющимися переменными:

Решаем это уравнение:

,

Так как , то .

Снова получили уравнение с разделяющимися переменными, поэтому

, .

Значит, — общее решение нашего уравнения.

 

Задание 5.7. Решить задачу Коши:

, , ,

Составляем характеристическое уравнение и решаем его:

, , , , .

Общее решение исходного уравнения имеет вид:

.

Находим:

.

Используем начальные условия

Решаем систему:

, , , .

Решение задачи Коши имеет вид:

.

 

Задание 5.8. Найти общее решение:

.

Находим корни характеристического уравнения:

Следовательно общее решение однородного уравнения имеет вид

(; — фундаментальная система решений):

.

Правая часть уравнения представляет собой сумму функций и .

Для нахождения частных решений, соответствующих этим функциям составляем:

для

S=1 (кратность числа среди корней характеристического уравнения)

 

;

для :

(кратность числа среди корней характеристического уравнения).

т.е. — частное решение нелинейного уравнения с неизвестными коэффициентами.

Подставляем в исходное уравнение:

Для выполнения тождества необходимо равенство коэффициентов:

Поэтому:

Таким образом, частное решение исходного уравнения имеет вид:

,

а его общее решение:

 

Задание 5.9. Найти общее решение:

Находим общее решение однородного уравнения:

Частное решение неоднородного уравнения по методу Лагранжа имеет вид:

Для нахождения функций составляем систему:

 

 

Тогда:

Таким образом, общим решением уравнения является функция:

Здесь Ai, Bi (i =1, 2, 3).

 

Задание 5.10. Методом исключения найти общее решение системы:

Первое уравнение продифференцируем по :

Из второго уравнения подставим в полученное выражение :

Из первого выразим и подставим его в последнее уравнение:

Окончательно получим:

Решаем это уравнение:

;

 

Из выражения для получим:

Таким образом, общее решение системы имеет вид:

.

 

Задание 5.11. а) Методом характеристического уравнения найти общее решение системы:

Составляем характеристическое уравнение и решаем его:

 

Для составляем систему:

Пусть тогда и

Для :

.

Пусть , тогда и

.

Общим решением исходной системы будет вектор функция:

 

или в координатной форме:

 

 

б) С помощью операционного исчисления найти общее решение системы:

Применим преобразование Лапласа к обеим частям каждого уравнения:

Пользуясь свойством линейности преобразования и теоремой о дифференцировании оригинала:

получим:

Т. к. и не заданы, то считаем их произвольными величинами:

Тогда

Откуда

Для восстановления оригиналов и разложим дроби на простейшие:

Тогда

Поскольку и — произвольные, то можно ввести обозначения:

Поэтому:

Так как для изображения оригиналом является , то получаем общее решение системы:

 

 

Решение типового варианта







Дата добавления: 2015-09-19; просмотров: 683. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия