Студопедия — Игры не содержащие седловой точки. Смешанные стратегии
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Игры не содержащие седловой точки. Смешанные стратегии






На практике игры в чистых стратегиях (игры с седловой точкой) встречаются редко, чаще всего решаются игры, у которых нижняя цена игры альфа неравна верхней цене игры бетта, причем в большинстве случаев альфа<бетта.

В таком случае говорят, что игра не имеет седловой точки и не имеет решения в чистых стратегиях и необходимо искать решение игры в смешанных стратегиях.

Практика показывает, что если игра одноходовая, т.е. партнеры играют всего 1 раз выбирая по одной чистой стратегии, то в расчете на разумно играющего противника они должны придерживаться принципа minmax это гарантирует игроку А выигрыш V(цена игры)>= альфа,а игроку В проигрыш V<= бетта. При получении решения в смешанных стратегиях цена игры альфа<= V<= бетта.

Если игра повторяется многократно, то постоянное применение minmax стратегии не целесообразно, игрок В, понимая, что игрок А всегда применяет minmax стратегию (пример 2) может применить свою немаксиминную стратегию, а стратегию, обеспечивающую больший выигрыш. Таким образом если игра происходит многократно, то игроку А как и игроку В необходимо переодически менять стратегии.

Возникает вопрос каким образом менять стратегии игрокам А и В с тем, чтобы обеспечить цену игры V, находящуюся в пределах альфа и бетта.

Для решения игр в смешанных стратегия вводят обозначение P(xi) – вероятность выбора игроком А стратегий ai. И вероятность P(yj) – вероятность выбора игроком В стратегий bj.

Тогда в целом P(x)=<P(x1),P(x2),…,P(xn)>

P(y)=<P(y1),P(y2),…,P(yn)>

Где в сумме вероятности события каждого вектора должны быть равны 1.

Такие векторы или наборы вероятностей в теории игр называются смешанными стратегиями игроков, а каждый отдельный элемент вектора P(xi) или P(yj) называются чистыми стратегиями игрока.

Для получения ограничений на средний выигрыш или средний проигрыш рассчитывают математическое ожидание выигрыша первого игрока.

Если игрок В выбрал некоторую стратегию, то А лучше считать ту смешанную стратегию, при котором достигается максимум этого мат.ожидания.

Аналогично при выборе игроком А некоторой смешанной стратегии, игроку В следует выбирать ту стратегию, которая обеспечила бы минимум этого мат. Ожидания.Таким образом мат.ожидание игрока А зависит и от выбранной смешанной стратегии игрока В и зависит от мат.ожидания для игрока В, тогда игрок А должен выбирать такую оптимальную стратегию Х*, которое максимизирует его мат.ожидание, а игрок В должен выбирать такую оптимальную стратегию У*, которая минимизирует его мат.ожидание.

Для решения игр в смешанных стратегиях существует и доказана фон Нейманом основная теорема теории игр. Эта теорема гласит, что каждая матричная игра с нулевой суммой имете покрайней мере одно решение. Возможно в области смешанных стратегий. То есть существуют такие типы смешанных решений, который оптимальны для обоих игроков, причем maxmin мат ожидания одного игрока равен мат ожидания другого игрока и такое ожидание называет ценой игры без седловой точки. При этом под нулевой суммой понимают ситуацию, когда выигрыш одного игрока равен проигрышу другого игрока. Из этой основной теоремы следует вывод, что любая конечная, матричная игра имеет решение возможно не в чистых, а в смешанных стратегиях и цена этой игры В лежит между нижней и верхней ценой игры, таким образом если один из игроков придерживается своей оптимальной стратегии, то выигрыш и соответственно проигрыш остается неизменным независимо от тактики другого игрока, если второй игрок не выходит за рамки своей «полезной стратегии» в результате такого выхода за рамки выигрыш или проигрыш будет увеличиваться, это означает выполнение неравенств

Эти неравенства сводят решение матричной игры к задаче линейного программирования

 

 







Дата добавления: 2015-08-17; просмотров: 1141. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия