Студопедия — Вывод основного уравнения упругого режима
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вывод основного уравнения упругого режима






 

Считаем пласт упругим, горизонтальным и большой протяженности и в нём имеется одна скважина, тогда движение жидкости в пласте можно считать плоскорадиальным к точечному стоку (эксплуатационная скважина) или от точечного источника (нагнетательная скважина).

Рассмотрим процесс перераспределения давления при неустановившимся плоском радиальном движении жидкости. Для этого запишем уравнение пьезопроводности в цилиндрической системе координат

. 5.12

Предположим, что возмущение вызвано мгновенным стоком, существовавшим в момент t=t/. Для этого случая решение уравнения (5.12) имеет вид

, 5.13

где А и С - некоторые постоянные.

Найдём значения постоянных. Для этого будем считать, что в момент времени t=t/ давление в пласте было р=рк=const. Тогда при r>0 и при t=t/ второй член правой части обращается в неопределённость типа ¥/¥; и определяется по правилу Лапиталя, что даёт С=рк Таким образом,

, 5.14

Для определения коэффициента А воспользуемся соотношением (5.4) для определения объёма высвобождающейся жидкости для случая кольцевого элемента пласта с внутренним радиусом r, толщиной h и шириной dr, а также учтем падение давления Dр=p0-p по (5.14)

dtз=b*Dрdt0 = . 5.15

.

После интегрирования (5.15) в пределах от 0 до ¥; получим объём жидкости t2, выделившейся из всего пласта и, следовательно, определим коэффициент А

. 5.16

Т.о. в случае скважины, введенной в неограниченный пласт в некоторый (начальный) момент времени и действующей мгновенно, изменение давления во времени определяется соотношением

, 5.17

 

Если скважина была введена в некоторый момент времени и действовала непрерывно с постоянным дебитом Q=Q0 в течении времени dt/, то за этот промежуток времени через сток выделяется из пласта объём dt2=Qdt/ и, следовательно, из (5.17) следует

, 5.18

 

Интеграл правой части носит название интегрально-показательной функции

и с учетом данного обозначения решение для изменения давления запишется в виде

, 5.19

 

Формула (5.19) является основной формулой теории упругого режима пласта.

 

Интегрально-показательная функция имеет вид (рис.5.1) и обладает следующими свойствами:

* - Ei(-u) изменяется от 0 до ¥ при изменении аргумента от 0 до ¥;

* функция - Ei(-u) представляется в виде сходящегося ряда

 

5.20

Для малых значений u <1 можно принять

5.21

Так погрешность применения (5.21) не превышает 0,25% при u <0,01; 5,7% - при u <0,1

 

. 5.22

 

С учетом соотношения (5.21) основное уравнение (5.19 перепишется в виде

, 5.23

 

Полученную зависимость можно использовать при числе Фурье с погрешностью не превышающей 0,6%. Практически это означает, чтоуже через 1 с после пуска скважины расчеты забойного давления, выполненные по формуле (5.23), будут иметь погрешность не превышающую 0,6%. Формулу (5.23) можно использовать и для расчета падения давления в конечном пласте, а именно, погрешность расчета давления при этом не превышает 1%, если rк >1000rc и fo <3,5.105 или Fo <0,35.

 

Рассмотрим пьезометрические кривые для бесконечного пласта, который эксплуатируется скважиной радиуса rc c постоянным дебитом Q0 (рис.5.2). Для точек вблизи забоя можно пользоваться формулой (5.23): дифференцируя её по координате r, найдём градиент давления

.

 

Из этой формулы следует, что градиент давления для значений r, удовлетворяющих неравенству r2<<0,03.4kt, практически не завист от времени и определяется по той же формуле, что для установившейся плоскорадиальной фильтрации несжимаемой жидкости. Для указанных значений r пьезометрические кривые представляют собой логарифмические линии (рис.5.2). Углы наклона касательных на забое скважины одинаковы для всех кривых.

 







Дата добавления: 2015-08-17; просмотров: 474. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия