Студопедия — Электронная конфигурация комплексообразователя
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Электронная конфигурация комплексообразователя






Устойчивость, реакционная способность и многие физические свойства координационных соединений 3d-металлов во многом определяются электронной конфигурацией комплексообразователя, симметрией координационного полиэдра и значениями констант образования, определяющих стандартную величину окислительно-восстановительного потенциала.

 

 

 

Откуда

   

Для одного и того же комплексообразователя окислительно-восстановительный потенциал может существенно изменяться; этим достигается стабилизация требуемой степени окисления центрального иона. В табл. 9.3 приведены степени окисления 3d-металлов в координационных соединениях.

dn Sc Ti V Cr Mn Fe Co NI Cu Zn
d0                    
d1                    
d2                    
d3                    
d4                    
d5                    
d6                    
d7                    
d8                    
d9                    
d10                    

 

Таблица 9.3 Степени окисления 3d-металлов в координационных соединениях

Электронные конфигурации во многом предопределяют свойства и строение координационных соединений 3d-металлов.

3d0 (Sc3+, Ti4+, V5+, Cr6+, Mn7+) обычно образуют тетраэдрические тетраоксоанионы ( ) и октаэдрические [ScF6]3–, [TiF6]2–, [VF6].

3d1 (Ti3+, V4+ или VO2+, Cr5+, Mn6+), соединения Ti3+ обычно имеют октаэдрическое строение [TiCl6]3–, [Ti(H2O)6]3+, в водных растворах V4+ не существует, переходя в ванадил-ион с искаженной октаэдрической структурой [VO(H2O)5]2+. Соединения Cr5+ и Mn6+ обычно известны в виде анионов и которые в водной среде диспропорционируют.

3d2 (Ti2+, V3+, Cr4+, Mn5+, Fe6+). В водных растворах они неустойчивы: [Ti(H2O)6]2+ – сильнейший восстановитель, и – сильнейшие окислители. Они в этих степенях окисления существуют только в твердом состоянии.

3d3 (V2+, Cr3+, Mn4+). Из них наиболее устойчив Cr3+ в октаэдрических комплексах, которые относятся к инертным соединениям независимо от вида комплекса (катионного, анионного или нейтрального). Они интенсивно окрашены, поскольку основные полосы поглощения находятся в видимой области.

3d4 (Cr2+, Mn3+). В водных растворах гексааквакомплексы [Cr(H2O)6]2+ и [Mn(H2O)6]3+ неустойчивы; первый окисляется до [Cr(H2O)6]3+, а второй диспропорционирует 2Mn3+→ Mn2+ + Mn4+. Стабилизируют эту электронную конфигурацию двойные соли M2ISO4∙CrSO4∙6H2O (M = NH4+, Na+, K+, Rb+, Cs+), в которых Cr2+ остается высокоспиновым (S = 2) и бидентатные лиганды (dipy – дипиридил и phen – фентантролин). Комплексы [Cr(dipy)3]X2 и [Cr(phen)3]X2 (X = Cl, Br, I) оказываются низкоспиновыми (S = 1). В моногидрате ацетата Cr (II) стабилизация электронной конфигурации обусловлена димеризацией (рис. 9.8).

1
Рисунок 9.8 Димер моногидрата ацетата хрома (II)

Межатомное расстояние Cr–Cr (0,264 нм) обусловлено образованием четверной связи между атомами хрома за счет всех четырех d-электронов.

Соединения Mn (III) стабильны с лигандами, образующими металлоцикл, в частности с ацетилацетоном

2
Рисунок 9.9 Формула ацетилацетонат-иона

 

3
Рисунок 9.10 Фрагмент трисацетилацетоната Mn (III)

 

или с тетрадентатными плоскими лигандами типа N'N'-этилен-бис(салицилиденимином), в которых Mn(III) стабилизируется в результате димеризации с образованием μ-оксо соединения – μ-оксо-[N'N'этилен-бис(салицилидениминат) марганца (III)]

4
Рисунок 9.11 μ-оксо[N,N'-этилен-бис(салицилидениминат) марганца(III)]

3d5 (Mn2+, Fe3+). Октаэдрические комплексы устойчивы как в водных, так и неводных растворах. С лигандами слабого поля они образуют высокоспиновые комплексы – [Fe(H2O)6]Cl3, K3[FeF6], с лигандами сильного поля – низкоспиновые комплексы: K3[Fe(CN)6], K4[Mn(CN)6].

3d6 (Fe2+, Co3+, реже Ni4+). Электронной конфигурации 3d6 в октаэдрическом окружении энергетически выгодно образование низкоспиновых комплексов (энергия стабилизации кристаллическим полем наибольшая – 2,4 Δокт); только слаболигандные комплексы остаются высокоспиновыми – [FeF6]4– и [CoF6]3–.

3d7 (Co2+, реже Ni3+). Октаэдрические комплексы Co(II) в водных растворах менее стабильны, чем тетраэдрические. Это обусловлено более симметричным размещением электронов на расщепленных полем лигандов d-орбиталях: ( ) в октаэдре и (e4 ) в тетраэдре. Октаэдрические комплексы Ni3+ получены только в примесных кристаллах, в которых Ni3+ занимает место Al3+.

3d8 (обычно Ni2+). В многочисленных октаэдрических комплексных ионах – [Ni(H2O)6]2+, [Ni(NH3)6]2+, [Ni(NO2)6]4– – Ni2+ сохраняет два неспаренных электрона. Если же образуются плоские четырехкоординационные (квадратные) комплексы типа [Ni(CN)4]2–, то они не содержат неспаренных электронов (S = 0) из-за того, что понижение симметрии от октаэдрической до квадратной приводит к расщеплению трехкратновырожденного уровня (dε, t2g) на дву- и однократный (синглетный), а двукратновырожденный уровень (dγ, eg) – на два синглета. В результате самый высокоэнергетический синглетный уровень оказывается незаселенным.

3d9 (Cu2+). Ионы Cu2+ образуют многочисленные координационные соединения с координационными числами шесть, пять и четыре: [Cu(H2O)6]2+, [CuCl5]3–, [Cu(NH3)4]2+ или [CuCl4]2–. Единственный неспаренный электрон сохраняется независимо от симметрии. Моногидрат ацетата меди (II) в кристаллическом состоянии изоструктурен моногидрату ацетата хрома (II) (рис. 9.8). В бис(μ-диацетато-0'0'-аква) димеди (II) ионы меди (II) связаны слабой δ-связью, результатом которой является молекулярный антиферромагнетизм, объясненный впервые при интерпретации необычных спектров электронного парамагнитного резонанса.

3d10 (Cu+, Zn2+). Ион Cu+ обычно является двухкоординационным [CuCl2], [Cu(NH3)2]+, а Zn2+ в зависимости от лигандов может быть тетраэдрическим [Zn(CN)4]2– или октаэдрическим [Zn(H2O)6]2+.

Кинетическая устойчивость комплексов во многом определяется электронной конфигурацией центрального атома и его симметрией.

Окраска координационных соединений обусловлена переходами между энергетическими уровнями, определяемыми электронной конфигурацией центрального иона и симметрией координационного полиэдра. При этом поглощается часть видимого спектра в виде суперпозиции полос поглощения как результат перехода с нижнего уровня на вышележащие, а соединение приобретает окраску, дополнительную к цвету поглощаемых лучей (табл 9.2). Ионы [Sc(Lig)6]3+ и [Zn(Lig)6]2+ бесцветны, поскольку у первого нет электронов на dε-уровне, а у второго все d-орбитали заполнены. Окраска тетраэдрических тетраоксоанионов и объясняется переходом электронов со связывающих, заполненных электронами оксо-лигандов, на несвязывающие dγ (dz⊃2;, dx²–y²) центрального атома. По мере увеличения заряда аниона разность между этими уровнями меняется и в энергия перехода выходит из видимого диапазона.

9.6. Реакции с участием координационных соединений window.top.document.title = "9.6. Реакции с участием координационных соединений";

Реакции с участием координационных соединений делятся на четыре основных типа: 1) присоединение, замещение или отщепление лиганда; 2) изомеризации координационного полиэдра; 3) реакции связанного лиганда; и 4) реакции электронного переноса.

1а. Присоединение лиганда сопровождается изменением степени окисления реагирующих центрального атома и лигандов

   

или с их сохранением

   
   

1б. Замещение лиганда с разрывом связи металл–донорный атом кинетически совпадает с повышением их констант образования.

1в. Отщепление лиганда с разрывом связи сопровождается внутримолекулярным окислительно-восстановительным взаимодействием

   

2. Изомеризация – весьма распространенное явление среди геометрических и оптических изомеров:

  цис- транс-  

Некоторые оптические изомеры типа

1
Рисунок 9.12

склонны к рацемизации, т. е. к образованию эквимольной смеси право- (d) и лево- (l) вращающих комплексов по следующей схеме:

2
Рисунок 9.13

3. Реакции связанного лиганда многообразны и в некоторых случаях служат основой получения новых органических и неорганических соединений.

3
Рисунок 9.14

При перекристаллизации из R–OH бис-(диэтилдитиокарбоната)Ni (II) легко протекает реакция переэтерификации (Et2NCS2)2Ni + 4R–OH → (R2NCS2)2Ni + 4EtOH. В результате взаимодействия бис(ацетилацетоната)Ni (II) с этилендиамином получается N'N'-этилен-бис(ацетилацетониминат)Ni (II), который при извлечении иона Ni (II) даст органическое соединение N'N'-этилен-бисацетилацетонимин.

4
Рисунок 9.15

4. Реакции электронного переноса сопровождаются изменением степени окисления центрального иона и вызваны образованием более устойчивых электронных конфигураций за счет увеличения энергии стабилизации кристаллическим полем (ЭСКП).

   

 

 

 

 







Дата добавления: 2015-08-17; просмотров: 617. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия