Студопедия — Скорости газовых молекул. Опыт Штерна (Савельев, курс общей физики 319, 321)
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Скорости газовых молекул. Опыт Штерна (Савельев, курс общей физики 319, 321)






Каковы скорости, с которыми движутся молекулы, в частности молекулы газов? Этот вопрос естественно возник тотчас же, как были развиты представления о молекулах. Долгое время скорости молекул удавалось оценить только косвенными расчетами, и лишь затем были разработаны способы прямого определения скоростей газовых молекул.

Прежде всего уточним, что надо понимать под скоростью молекул. Напомним, что вследствие частых столкновений скорость каждой отдельной молекулы все время меняется: молекула движется то быстро, то медленно, и в течение некоторого времени (например, одной секунды) скорость молекулы принимает множество самых различных значений. С другой стороны, в какой-либо момент в громадном числе молекул, составляющих рассматриваемый объем газа, имеются молекулы с самыми различными скоростями. Очевидно, для характеристики состояния газа надо говорить о некоторой средней скорости. Можно считать, что это есть среднее значение скорости одной из молекул за достаточно длительный промежуток времени или что это есть среднее значение скоростей всех молекул газа в данном объеме в какой-нибудь момент времени.

Приведем рассуждения, которые дают возможность вычислить среднюю скорость газовых молекул.

В § 221 мы показали, что давление газа пропорционально nmv2, где m — масса молекулы, v — средняя скорость, а n — число молекул в единице объема. Точный расчет приводит к формуле
(243.1)
Рассмотрим газ, заключенный в сосуде, имеющем форму куба с ребром l (рис. 389). Если газ находится в равновесии, все направления движения молекул являются равновероятными, так что молекулы ударяются о стенку сосуда, двигаясь под различными углами (от 0 до я/2) к нормали к стенке. Для упрощения будем считать, что молекулы движутся только вдоль трех взаимно перпендикулярных направлений, совпадающих с ребрами куба, причем вдоль каждого из них летит 1/3 всех молекул газа. На рис. 389 изображена одна из молекул, летящих вдоль нормали к заштрихованной грани куба. Число таких молекул равно nl3/3, где n — число молекул в единице объема.

Пренебрегая соударениями молекул друг с другом, можно считать, что рассматриваемая молекула летит со средней скоростью v, отражаясь поочередно от противолежащих граней. За время между двумя последовательными ударами о заштрихованную грань молекула пролетает путь, равный 2l. Следовательно, она ударяется о заштрихованную стенку v/2l раз за единицу времени. Всего стенка испытает

ударов за единицу времени. Разделив это выражение на l2, получим число ударов N, которое испытывает единица площади стенки за единицу времени. Таким образом,
(243.2)
Подставив это значение N в формулу (221.1), найдем давление газа на стенку:

Мы пришли к формуле (243.1).

Штерна опыт, экспериментальное определение скоростей теплового движения молекул газа, осуществленное О. Штерном в 1920. Ш. о. подтвердил правильность основ кинетической теории газов. Исследуемым газом в опыте служили разреженные пары серебра, которые получались при испарении слоя серебра, нанесённого на платиновую проволоку, нагревавшуюся электрическим током. Проволока располагалась в сосуде, из которого воздух был откачан, поэтому атомы серебра беспрепятственно разлетались во все стороны от проволоки. Для получения узкого пучка летящих атомов на их пути была установлена преграда со щелью, через которую атомы попадали на латунную пластинку, имевшую комнатную температуру. Атомы серебра осаждались на ней в виде узкой полоски, образуя серебряное изображение щели. Специальным устройством весь прибор приводился в быстрое вращение вокруг оси, параллельной плоскости пластинки. Вследствие вращения прибора атомы попадали в др. место пластинки: пока они пролетали расстояние l от щели до пластинки, пластинка смещалась. Смещение растет с угловой скоростью w прибора и уменьшается с ростом скорости v атомов серебра. Зная wи l, можно определить v. Т. к. атомы движутся с различными скоростями, полоска при вращении прибора размывается, становится шире. Плотность осадка в данном месте полоски пропорциональна числу атомов, движущихся с определённой скоростью. Наибольшая плотность соответствует наиболее вероятной скорости атомов. Полученные в Ш. о. значения наиболее вероятной скорости хорошо согласуются с теоретическим значением, полученным на основе Максвелла распределения молекул по скоростям.







Дата добавления: 2015-06-12; просмотров: 1140. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия