Студопедия — Комплексообразующая способность d-элементов
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Комплексообразующая способность d-элементов






Возможность создания химических связей с участием d-электронов и свободных d-орбиталей обуславливает ярко выраженную способность d-элементов к образованию устойчивых комплексных соединений.

При низких степенях окисления для d-элементов более характерны катионные, а при высоких – анионные октаэдрические комплексы ([ScF6]3–, [TiF6]2–, [VF6]–)

КЧ d-элементов непостоянны, это четные числа от 4 до 8, реже 10,12.

Используя незаполненные d-орбитали и неподеленные пары d-электронов на предвнешнем электронном слое, d-элементы способны выступать как донорами электронов – дативная связь, так и акцепторами электронов. Пример соединений с дативной связью: [HgI]Ї, [CdCl4.

Гидроксокомплексы – комплексные соединения, содержащие в качестве лигандов гидроксид-ионы OH-. Гидроксокомплексы образуются в реакциях протолиза из аквакомплексов:

[Al(H2O)6]3+ + H2O [Al(H2O)5(OH)]2+ + H3O+

либо при растворении амфотерных гидроксидов в водных растворах гидроксидов щелочных металлов:

Zn(OH)2 + 2 OH- = [Zn(OH)4]2-

Fe - ходит в состав гемоглобина, ферментов цитохромов, каталазы, пероксидазы

Co - входит в состав витамина В12

Cr - Биогенный элемент.

Mn - Входит в состав ферментов

Cu - Входит в состав ферментов окигеназ и гидролаз. Участвует в кроветворении.

Zn - Входит в состав ферментов катализирующих гидролиз пептидов, белков, некоторых эфиров и альдегидов.

23. К р – блоку относятся 30 элементов IIIA-VIIIA групп периодической системы и входят во второй и третий малые периоды, а также в четвертый – шестой большие периоды. У элементов IIIA группы появляется первый электрон на р – орбитали. В других группах IVA-VIIIA происходит последовательное заполнение р – подуровня до 6 электронов. Строение внешних электронных оболочек атомов элементов р – блока ns2npa, где а = 1÷6.

На свойства р–элементов и их соединений оказывает влияние как появление новых подуровней на внешней электронной оболочке, так и заполнение внутренних электронных оболочек. р – Элементы второго периода (В, С, N, O, F) резко отличаются от элементов нижеследующих периодов, так как, начиная с р–элементов третьего периода, появляется низколежащий свободный d-подуровень, на который могут переходить электроны с р – подуровня при возбуждении атома. Полностью заполненный 3 d-подуровень у р–элементов четвертого периода (Ga, Ge, As, Se, Br) обуславливает отличие их свойств от элементов третьего периода. Максимальное заполнение 4f-подуровня в шестом периоде сказывается на различии свойств р–элементов шестого и пятого периодов.

Вдоль периода у р–элементов падает способность к образованию положительно заряженных ионов с зарядом, отвечающим номеру группы, и наоборот, способность к образованию отрицательных ионов с зарядом, равным (8 – № группы) возрастает.

р – элементы образуют двухатомные молекулы Э2, различающиеся по устойчивости. Наиболее устойчивы молекулы элементов второго периода (N2, O2, F2). При переходе от IIIA к IVA и VA группам устойчивость двухатомных молекул возрастает, а затем при переходе к VIIIА группе понижается. В группах сверху вниз прочность связи Э–Э уменьшается.

Постоянные пломбировочные (реставрационные) материалы предназначены для восстановления анатомической формы, функции и внешнего вида зуба, а также предотвращения развития кариеса. Один из разновидностей таких материалов цементы:

– цинк-фосфатные цементы;

– силикатные цементы;

– силикофосфатные цементы.

Твердокристаллические материалы

К этой группе слепочных материалов относятся гипс, цинкоксиэвгеноловые и цинкоксигваяколовые пасты. Характерной особенностью этих масс является то, что в отвердевшем состоянии они имеют четкое кристаллическое строение, лишены пластичности и упругих свойств.

24. Адсорбция - изменение концентрации вещества на границе раздел фаз. Происходит на любых межфазовых поверхностях и адсорбироваться могут любые вещества. Адсорбционное равновесие, т.е. равновесие распределения вещества между пограничным слоем и граничащими фазами, является динамическим равновесием и быстро устанавливаются. Адсорбция уменьшается с увеличением температуры и покидает поверхность. Поверхностное Натяжение есть величина, численно равная энергии Гиббса, приходящейся на единицу площади поверхностного слоя и численно равная работе, еоторую необходимо совершить для образования единицы поверхности раздела фаз при постоянной температуре. ПН зависит от природы жидкости и температуры(уменьшается с ростом t). Вода имеет самое высокое значение ПН. ПН сыворотки крови составляет 45,4*10-3Н/м.

Пове́рхностные явле́ния — совокупность явлений, обусловленных особыми свойствами тонких слоёв вещества на границе соприкосновения фаз. К поверхностным явлениям относятся процессы, происходящие на границе раздела фаз, в межфазном поверхностном слое и возникающие в результате взаимодействия сопряжённых фаз.

Если сигма вещества больше сигма растворителя, то это ПНВ. Такое вещество равномерно распределяется и мало влияет на поверхностное натяжение. ПНВ: соли, кислоты, углеводы. Для ПНВ g=0 Г=0

Если добавить вещество, у которого сигма < сигма растворителя, то поверхностное натяжение раствора резко уменьшится. Это ПАВ – дифильная молекула(одна часть любить воду, а другая нет) ПАВ: жиры. Для ПАВ g>0 Г >0

Биомембраны: структура и функции

А. Структура плазматической мембраны

Все биомембраны построены одинаково; они состоят из двух слоев липидных молекул толщиной около 6 нм, в которые встроены белки. Некоторые мембраны содержат, кроме того, углеводы, связанные с липидами и белками. Соотношение липиды: белки: углеводы является характерным для клетки или мембраны и существенно варьирует в зависимости от типа клеток или мембран (см. с. 218).

Компоненты мембран удерживаются нековалентными связями (см. с. 12), вследствие чего они обладают лишь относительной подвижностью, т. е. могут диффундировать в пределах липидного бислоя. Текучесть мембран зависит от липидного состава и температуры окружающей среды. С увеличением содержания ненасыщенных жирных кислот текучесть возрастает, так как наличие двойных связей способствует нарушению полукристаллической мембранной структуры. Подвижными являются и мембранные белки. Если белки не закреплены в мембране, они «плавают» в липидном бислое как в жидкости. Поэтому говорят, что биомембраны имеют жидкостно-мозаичную структуру.

В то время как «дрейф» в плоскости мембраны происходит достаточно легко, переход белков с внешней стороны мембраны на внутреннюю («флип-флоп») невозможен, а переход липидов происходит крайне редко. Для «перескока» липидов необходимы специальные белки транслокаторы. Исключение составляет холестерин, который может легко переходить с одной стороны мембраны на другую.

Б. Мембранные липиды

На рисунке схематически изображена биомембрана. В мембранах содержатся липиды трех классов: фосфолипиды, холестерин и гликолипиды. Наиболее важная группа, фосфолипиды, включает фосфатидилхолин (лецитин), фосфатидилэтаноламин, фосфатидилсерин, фосфатидилинозит и сфингомиелин (см. с. 56). Холестерин присутствует во внутриклеточных мембранах животных клеток (за исключением внутренней мембраны митохондрий). Гликолипиды входят в состав многих мембран (например, во внешний слой плазматических мембран). В состав гликолипидов входят углеводные функциональные группы (см. с. 92), которые ориентируются в водную фазу.

Липиды мембран представляют собой амфифильные молекулы с полярной гидрофильной головкой (голубого цвета) и неполярным липофильным хвостом (желтого цвета). В водной среде они агрегируют за счет гидрофобных взаимодействий и вандерваальсовых сил (см. сс. 12, 34).

В. Мембранные белки

Протеины могут связываться с мембраной различным путем.

Интегральные мембранные белки имеют трансмембранные спирализованные участки (домены), которые однократно или многократно пересекают липидный бислой. Такие белки прочно связаны с липидным окружением.

Периферические мембранные белки удерживаются на мембране с помощью липидного «якоря» (см. с. 230) и связаны с другими компонентами мембраны; например, они часто бывают ассоциированы с интегральными мембранными белками.

У интегральных мембранных белков фрагмент пептидной цепи, пересекающий липидный бислой, обычно состоит из 21-25 преимущественно гидрофобных аминокислот, которые образуют правую α-спираль с 6 или 7 витками (трансмембранная спираль).

25. Дисперсные системы - гетерогенные системы из двух или большего числа фаз с сильно развитой поверхностью раздела между ними. Обычно одна из фаз образует непрерывную дисперсионную среду, в объеме которой распределена дисперсная фаза (или несколько дисперсных фаз) в виде мелких кристаллов, твердых аморфных частиц, капель или пузырьков. По степени раздробленности(дисперсности) системы делятся на следующие классы: 1) грубодисперсные, размер частиц в которых более 10-5 м; 2) тонкодисперсные (микрогетерогенные) с размером частиц от 10-5 до 10-7 м; 3) коллоидно-дисперсные (ультрамикро-гетерогенные)с частицами размером от 10-7до 10-9м.

Если фиксировать внимание на двух основных компонентах дисперсных систем, то одному из них следует приписать роль дисперсионной среды, а другому - роль дисперсной фазы. В этом случае все дисперсные системы можно классифицировать по агрегатным состояниям фаз.

По агрегатным состояниям фаз- два класса: свободнодисперсные системы и сплошные (или связнодисперсные) системы.В свободнодисперсных системах дисперсная фаза не образует сплошных жестких структур (сеток, ферм или каркасов). Эти системы называют золями. В сплошных (связнодисперсных) системах частицы дисперсной фазы образуют жесткие пространственные структуры (сетки, каркасы, фермы). Такие системы оказывают сопротивление деформации сдвига.

Классификация дисперсных систем по силе межмолекулярного взаимодействия: 1) лиофобные- слабое взаимодействие между дисперсной фазой и дисперсной средой 2) лиофильные- сильное взаимодействие

Коллоидными системами называют двух или многофазные системы, в которых одна фаза находится в виде отдельных мелких частиц, распределенных в другой фазе. Такие ультрамикрогетерогенные системы с определенной (коллоидной) дисперсностью проявляют способность к интенсивному броуновскому движению и обладают высокой кинетической устойчивостью. Имея высокоразвитую поверхность раздела фаз и, следовательно, громадный избыток свободной поверхностной энергии, эти системы являются принципиально термодинамически неустойчивыми, что выражается в агрегации частиц, т.е. в отсутствии агрегативной устойчивости. Это системы с очень малой межфазовой энергией, они термодинамически устойчивы и образуются самопроизвольно.

Все молекулярно-кинетические свойства вызваны хаотическим тепловым движением молекул дисперсионной среды, которое складывается из поступательного, вращательного и колебательного движения молекул.

Молекулы жидкой и газообразной дисперсионной среды находятся в постоянном движении и сталкиваются между собой. Среднее расстояние, проходимое молекулой до столкновения с соседней, называют средней длиной свободного пробега. Молекулы обладают различной кинетической энергией.







Дата добавления: 2015-04-19; просмотров: 3766. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия