Студопедия — Метод декомпозиции Данцига-Вулфа в общем случае
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод декомпозиции Данцига-Вулфа в общем случае






Математические преобразования, приводящие к разбиению исходной задачи. Пусть имеется следующая модель задачи: L= C T X àmax; AX = B; X ³0, где вектор X имеет размерность n, а вектор Bm. Условия определяют допустимое множество задачи D. Представим матрицу А и вектор В в виде двух подматриц:

Тогда условия задачи записываются: А (0) Х = В (0); А (1) Х = В (1); Х ³0.

1 условия, включающие m0 равенств, порождают допустимое множество D0, а система содержит m1 равенств и вместе с Х ³0 задает множество D1. Очевидно, что m=m0+m1, D = D0 Ç D1. При этом выделение подматриц выполняется так, что m1 >> m0.

Будем полагать, что множество D1 ограниченное, является выпуклым многогранником. В противном случае его легко сделать ограниченным добавлением ограничений сверху на переменные так, что они не повлияют на исходное мн-во D.

Допустим известны вершины множества D1. Обозначим их координаты через Х 1, Х 2,…, Х N, где N – число вершин. Поскольку D1 – выпуклый многогранник, то любую его точку можно представить в виде линейной комбинации вершин:

Х = z n X n; S z n=1; z n³0, " v. Так как все решения Х принадлежат D1, то данное описание эквивалентно первому. L = C T z n X n; S A (0) X n z n= B (0). Считая X n известными: С Т Х n= sn; А (0) Х n= Р n. Тогда: L = s n z nàmax; P n z n= B (0); z n=1; " z n³0.

Неизвестными являются z n, число которых = числу вершин многогранника D1. Последнее равенство модели можно объединить со всеми остальными, используя обозначения:

Тогда получим (координирующая/основная задача): L = sn z nàmax; z n = ; " z n³0.

Отличие этой задачи от исходной в меньшем числе условий (m0 +1<< m). Если мы сможем найти Z *, то получим решение и исходной задачи: Х *= z n* X n.

Для решения основной задачи применим модифицированный симплекс-метод. Начальное решение можно построить, не зная ни одной вершины, с помощью искусственных переменных zN+i. Согласно модифицированному методу после получения очередного базисного решения вычисляются относительные оценки.

В обозначениях координирующей задачи:

или окончательно Мы не можем вычислить все оценки, так как нам не известно даже их число. Но этого и не требуется, достаточно только определить: есть или нет среди них отрицательные. Будем искать наименьшую оценку. Если она отрицательная, текущее решение координирующей задачи мб улучшено введением переменной с этой оценкой. Иначе - выполнение признака оптимальности.

Задача состоит в следующем: Dnàmin. или (pTA(0)-CT)Xn®

Решение задачи проблематично, так как минимум ищется на дискретном множестве вершин многогранника D1. Учитывая, что минимизируемая функция линейная, будем искать решение не на вершинах, а на всем многограннике. Известно, что если решение существует, то оно будет достигаться в вершине. Поэтому решение на всем (непрерывном) множестве D1 совпадет с решением подзадачи.

Подзадачу заменяем эквивалентной (вспомогательная задача):

Lвсп =(pTA(0)-CT)X® A(1)X = B(1); X ³ 0. Если вспомогательная задача неразрешима, то и исходная задача не имеет решения. Пусть оптимальное решение вспомогательной задачи достигается в вершине r. Т.е. становятся известны координаты вершины Xr и оптимальное значение критерия . Вычисляем минимальную оценку Если D r ³0, то и все оценки неотрицательны, и решение коорд. задачи завершено. При отрицательной D r в базис основной задачи вводится вектор :

Направляющий столбец находится разложением этого вектора по текущему базису:

. После определения направляющего элемента и симплекс-преобразования получаем новое решение основной задачи. Коэффициент критерия при переменной, введенной в базисное решение: sr = C T X r. Находим новый вектор , решаем вспомогательную задачу, по полученной мин. оценке вывод о дальнейших действиях.

Т.о, решение исходной задачи заменяется многократным решением основной и вспомогательной задач. Порядок размерности вспомогательной задачи такой же, как у исходной. Такой метод эффективен, когда сложность решения вспомогательной задачи намного ниже, чем исходной. Такие случаи имеют место, когда матрица условий задачи (после упорядочения строк и столбцов) оказывается почти-блочно-диагональной, как показано на рис. Пример: задача планирования производства продукции в крупной фирме или холдинге, когда у каждого предприятия своя номенклатура продукции, а некоторые ресурсы являются общими. Подматрица А (0), входящая в параметры координирующей задачи,соответствует ограничениям по общим ресурсам – связующие условия. Их относят к основной задаче. Остальные условия образуют вспомогательную задачу. При этом подматрица А (1) имеет блочно-диагональную структуру, что позволяет разбить вспомогательную задачу на p независимых задач:

После решения этих задач определяется критерий вспомогательной задачи по формуле Решение вспомогательной задачи существенно упрощается, если структура матрица условий мб приведена к блочно-диагональной.








Дата добавления: 2015-04-19; просмотров: 697. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия